vertex.rs 13.3 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
use crate::infer::Infer;
use crate::server::{generate_internal, ComputeType};
use crate::{
    ChatRequest, ErrorResponse, GenerateParameters, GenerateRequest, GrammarType, Message,
    StreamOptions, Tool, ToolChoice,
};
use axum::extract::Extension;
use axum::http::{HeaderMap, StatusCode};
use axum::response::{IntoResponse, Response};
use axum::Json;
use serde::{Deserialize, Serialize};
use tracing::instrument;
use utoipa::ToSchema;

#[derive(Clone, Deserialize, ToSchema)]
#[cfg_attr(test, derive(Debug, PartialEq))]
pub(crate) struct GenerateVertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Clone, Deserialize, ToSchema)]
#[cfg_attr(test, derive(Debug, PartialEq))]
pub(crate) struct VertexChat {
    messages: Vec<Message>,
    // Messages is ignored there.
    #[serde(default)]
    parameters: VertexParameters,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Default)]
#[cfg_attr(test, derive(Debug, PartialEq))]
pub(crate) struct VertexParameters {
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: Option<String>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
    #[schema(example = "false")]
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
    #[schema(example = "5")]
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(example = "32")]
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
    #[schema(nullable = true, example = "2")]
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
    #[schema(nullable = true, example = 0.1)]
    pub presence_penalty: Option<f32>,

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default)]
    #[schema(
        nullable = true,
        example = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables."
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tool_choice: ToolChoice,

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,

    /// A guideline to be used in the chat_template
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub guideline: Option<String>,

    /// Options for streaming response. Only set this when you set stream: true.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stream_options: Option<StreamOptions>,
}

impl From<VertexChat> for ChatRequest {
    fn from(val: VertexChat) -> Self {
        Self {
            messages: val.messages,
            frequency_penalty: val.parameters.frequency_penalty,
            guideline: val.parameters.guideline,
            logit_bias: val.parameters.logit_bias,
            logprobs: val.parameters.logprobs,
            max_tokens: val.parameters.max_tokens,
            model: val.parameters.model,
            n: val.parameters.n,
            presence_penalty: val.parameters.presence_penalty,
            response_format: val.parameters.response_format,
            seed: val.parameters.seed,
            stop: val.parameters.stop,
            stream_options: val.parameters.stream_options,
            stream: val.parameters.stream,
            temperature: val.parameters.temperature,
            tool_choice: val.parameters.tool_choice,
            tool_prompt: val.parameters.tool_prompt,
            tools: val.parameters.tools,
            top_logprobs: val.parameters.top_logprobs,
            top_p: val.parameters.top_p,
        }
    }
}

#[derive(Clone, Deserialize, ToSchema)]
#[cfg_attr(test, derive(Debug, PartialEq))]
#[serde(untagged)]
pub(crate) enum VertexInstance {
    Generate(GenerateVertexInstance),
    Chat(VertexChat),
}

#[derive(Deserialize, ToSchema)]
#[cfg_attr(test, derive(Debug, PartialEq))]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

/// Generate tokens from Vertex request
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
pub(crate) async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    let span = tracing::Span::current();
    metrics::counter!("tgi_request_count").increment(1);

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Prepare futures for all instances
    let mut futures = Vec::with_capacity(req.instances.len());

    for instance in req.instances.into_iter() {
        let generate_request = match instance {
            VertexInstance::Generate(instance) => GenerateRequest {
                inputs: instance.inputs.clone(),
                add_special_tokens: true,
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            },
            VertexInstance::Chat(instance) => {
                let chat_request: ChatRequest = instance.into();
                let (generate_request, _using_tools): (GenerateRequest, bool) =
                    chat_request.try_into_generate(&infer)?;
                generate_request
            }
        };

        let infer_clone = infer.clone();
        let compute_type_clone = compute_type.clone();
        let span_clone = span.clone();

        futures.push(async move {
            generate_internal(
                Extension(infer_clone),
                compute_type_clone,
                Json(generate_request),
                span_clone,
            )
            .await
            .map(|(_, Json(generation))| generation.generated_text)
            .map_err(|_| {
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Incomplete generation".into(),
                        error_type: "Incomplete generation".into(),
                    }),
                )
            })
        });
    }

    // execute all futures in parallel, collect results, returning early if any error occurs
    let results = futures::future::join_all(futures).await;
    let predictions: Result<Vec<_>, _> = results.into_iter().collect();
    let predictions = predictions?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{Message, MessageContent};

    #[test]
    fn vertex_deserialization() {
        let string = serde_json::json!({

            "messages": [{"role": "user", "content": "What's Deep Learning?"}],
            "parameters": {
                "max_tokens": 128,
                "top_p": 0.95,
                "temperature": 0.7
            }
        });

        let _request: VertexChat = serde_json::from_value(string).expect("Can deserialize");

        let string = serde_json::json!({
            "messages": [{"role": "user", "content": "What's Deep Learning?"}],
        });

        let _request: VertexChat = serde_json::from_value(string).expect("Can deserialize");

        let string = serde_json::json!({

        "instances": [
            {
                "messages": [{"role": "user", "content": "What's Deep Learning?"}],
                "parameters": {
                    "max_tokens": 128,
                    "top_p": 0.95,
                    "temperature": 0.7
                }
            }
        ]

        });
        let request: VertexRequest = serde_json::from_value(string).expect("Can deserialize");
        assert_eq!(
            request,
            VertexRequest {
                instances: vec![VertexInstance::Chat(VertexChat {
                    messages: vec![Message {
                        role: "user".to_string(),
                        content: MessageContent::SingleText("What's Deep Learning?".to_string()),
                        name: None,
                    },],
                    parameters: VertexParameters {
                        max_tokens: Some(128),
                        top_p: Some(0.95),
                        temperature: Some(0.7),
                        ..Default::default()
                    }
                })]
            }
        );
    }
}