vlm_causal_lm.py 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import re
import torch
import math
from PIL import Image
from io import BytesIO
import base64

from opentelemetry import trace
from typing import Optional, Tuple, List, Type, Dict

from transformers import PreTrainedTokenizerBase
from transformers.image_processing_utils import select_best_resolution
from text_generation_server.pb import generate_pb2
from text_generation_server.models.flash_mistral import (
    BaseFlashMistral,
    FlashMistralBatch,
)
from text_generation_server.models.cache_manager import (
    get_cache_manager,
)

tracer = trace.get_tracer(__name__)

IMAGES = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)")


def split(string) -> List[Dict[str, str]]:
    parts = []
    cursor = 0
    for pattern in IMAGES.finditer(string):
        start = pattern.start()
        if start != cursor:
            parts.append({"type": "text", "content": string[cursor:start]})

        parts.append({"type": "image", "content": pattern.group(1)})
        cursor = pattern.end()

    if cursor != len(string):
        parts.append({"type": "text", "content": string[cursor:]})

    return parts


def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (`tuple`):
            The size of the input image in the format (width, height).
        grid_pinpoints (`List`):
            A list containing possible resolutions. Each item in the list should be a tuple or list
            of the form `(height, width)`.
        patch_size (`int`):
            The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if not isinstance(grid_pinpoints, list):
        raise ValueError("grid_pinpoints should be a list of tuples or lists")

    height, width = select_best_resolution(image_size, grid_pinpoints)
    return height // patch_size, width // patch_size


Nicolas Patry's avatar
Nicolas Patry committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
def image_text_replacement(image_input, config, image_id) -> str:
    if config.model_type == "idefics2":
        # TODO technically depends on image splitting which is not implemented.
        num_features = 320
        return (
            "<fake_token_around_image>"
            + "<image>" * num_features
            + "<fake_token_around_image>"
        )
    elif config.model_type == "llava_next":
        height, width = image_input["image_sizes"][image_id]
        num_features = get_number_of_features(height, width, config)
        from loguru import logger

        logger.info(f"Found {num_features} in image of resolution {height}x{width}")
        return "<image>" * num_features
    else:
        raise RuntimeError(f"Unknown config {config.model_type} for multimodal")


def get_unpadded_features(
    height: int, width: int, npatches: int, num_patch_height: int, num_patch_width: int
) -> Tuple[int, int]:
    current_height = npatches * num_patch_height
    current_width = npatches * num_patch_width

    aspect_ratio: float = width / height
    current_aspect_ratio: float = current_width / current_height
    if aspect_ratio > current_aspect_ratio:
        new_height = (height * current_width) // width
        current_height = new_height
    else:
        new_width = (width * current_height) // height
        current_width = new_width

    unpadded_features = current_height * current_width
    newline_features = current_height
    return (unpadded_features, newline_features)


107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def get_number_of_features(height: int, width: int, config) -> int:
    # From config
    # Hardcoded for CLIP for now
    # image_grid_pinpoints = [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
    image_grid_pinpoints = config.image_grid_pinpoints
    image_size = config.vision_config.image_size
    patch_size = config.vision_config.patch_size

    assert image_size % patch_size == 0

    npatches = image_size // patch_size

    num_patch_height, num_patch_width = get_anyres_image_grid_shape(
        [height, width],
        image_grid_pinpoints,
        image_size,
    )
Nicolas Patry's avatar
Nicolas Patry committed
124
125
126
    unpadded_features, newline_features = get_unpadded_features(
        height, width, npatches, num_patch_height, num_patch_width
    )
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    # The base patch covers the entire image
    base_features = npatches**2
    return unpadded_features + newline_features + base_features


def load_data_uri(image_uri: str) -> Image.Image:
    image_uri = image_uri.split(",")[-1]
    content = base64.b64decode(image_uri)
    image = Image.open(BytesIO(content))
    return image


class VlmCausalLMBatch(FlashMistralBatch):
    pixel_values: Optional[List[torch.Tensor]]
Nicolas Patry's avatar
Nicolas Patry committed
141
    pixel_attention_mask: Optional[List[torch.Tensor]]
142
143
144
145
146
147
148
    image_sizes: Optional[List[Tuple[int, int]]]

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches):
        batch = super(VlmCausalLMBatch, cls).concatenate(batches)
        batch.pixel_values = None
Nicolas Patry's avatar
Nicolas Patry committed
149
        batch.pixel_attention_mask = None
150
151
152
153
154
155
156
        batch.image_sizes = None
        return batch

    @tracer.start_as_current_span("filter")
    def filter(self, request_ids: List[int]):
        batch = super().filter(request_ids)
        batch.pixel_values = None
Nicolas Patry's avatar
Nicolas Patry committed
157
        batch.pixel_attention_mask = None
158
159
160
161
162
163
164
165
166
167
168
        batch.image_sizes = None
        return batch

    @classmethod
    def batch_tokenized_inputs(cls, requests, tokenizer, processor, config):
        batch_inputs = []
        image_inputs = []
        max_truncation = 0
        for r in requests:
            chunks = split(r.inputs)
            full_text = ""
Nicolas Patry's avatar
Nicolas Patry committed
169
            image_id = 0
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
            for chunk in chunks:
                if chunk["type"] == "text":
                    full_text += chunk["content"]
                elif chunk["type"] == "image":
                    image = chunk["content"]
                    # Should never receive URLs anymore, processing should be done
                    # On the rust layer.
                    # This avoid making n queries per TP
                    # if image.startswith("https://") or image.startswith("http://"):
                    #     image = processor.image_processor.fetch_images(image)
                    if image.startswith("data:"):
                        image = load_data_uri(image)
                    else:
                        raise RuntimeError(
                            "Cannot process input image not starting with data:"
                        )
                    image_input = processor.image_processor(image, return_tensors="pt")
Nicolas Patry's avatar
Nicolas Patry committed
187
                    full_text += image_text_replacement(image_input, config, image_id)
188
189
190
191
192
193
194
195
196
197
198
                    image_inputs.append(image_input)
                else:
                    raise RuntimeError(f"Invalid chunk type {chunk['type']}")

            batch_inputs.append(full_text)
            max_truncation = max(max_truncation, r.truncate)

        batch_tokenized_inputs = tokenizer(
            batch_inputs, truncation=True, max_length=max_truncation
        )["input_ids"]
        if image_inputs:
Nicolas Patry's avatar
Nicolas Patry committed
199
200
            image_input = image_inputs[0]
            new_image_inputs = {
201
202
203
204
                "pixel_values": torch.cat(
                    [img["pixel_values"] for img in image_inputs], dim=0
                ),
            }
Nicolas Patry's avatar
Nicolas Patry committed
205
206
207
208
209
210
211
212
213
            if "pixel_attention_mask" in image_input:
                new_image_inputs["pixel_attention_mask"] = torch.cat(
                    [img["pixel_attention_mask"] for img in image_inputs], dim=0
                )
            if "image_sizes" in image_input:
                new_image_inputs["image_sizes"] = torch.cat(
                    [img["image_sizes"] for img in image_inputs], dim=0
                )
            image_inputs = new_image_inputs
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        else:
            image_inputs = None
        return batch_tokenized_inputs, image_inputs

    @classmethod
    def from_pb_processor(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        processor,
        config,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "VlmCausalLMBatch":
        batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs(
            pb.requests, tokenizer, processor, config
        )
        batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
        if image_inputs is not None:
            batch.pixel_values = image_inputs["pixel_values"].to(device=device)
Nicolas Patry's avatar
Nicolas Patry committed
234
235
236
237
238
239
240
241
242
243
            if "pixel_attention_mask" in image_inputs:
                batch.pixel_attention_mask = image_inputs["pixel_attention_mask"].to(
                    device=device
                )
            else:
                batch.pixel_attention_mask = None
            if "image_sizes" in image_inputs:
                batch.image_sizes = image_inputs["image_sizes"].to(device=device)
            else:
                batch.image_sizes = None
244
245
        else:
            batch.pixel_values = None
Nicolas Patry's avatar
Nicolas Patry committed
246
            batch.pixel_attention_mask = None
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
            batch.image_sizes = None
        return batch


class VlmCausalLM(BaseFlashMistral):
    @property
    def batch_type(self) -> Type[VlmCausalLMBatch]:
        return VlmCausalLMBatch

    def forward(
        self, batch: VlmCausalLMBatch
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        # Model Forward
        if batch.speculative_ids is not None:
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
            kv_cache = get_cache_manager().kv_cache
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices

            speculative_ids = batch.speculative_ids

            B, speculative_length = speculative_ids.shape
            new_length = speculative_length + 1
            new_input_ids = torch.cat(
                [input_ids.unsqueeze(-1), speculative_ids], dim=1
            ).reshape(-1)
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
            new_position_ids = (
                position_ids.unsqueeze(-1).expand(B, new_length) + arange
            ).view(-1)
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
            input_lengths = (
                input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
            ).view(-1)

            # Add Copy the block tables for all members
            block_tables = (
                block_tables.unsqueeze(1)
                .expand(B, new_length, -1)
                .reshape(B * new_length, -1)
                .contiguous()
            )
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
            kv_cache = get_cache_manager().kv_cache
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices

        if cu_seqlen_prefill is None and self.max_past() is not None:
            # In decode, not prefill, we're actually overwriting the KV-cache
            # in a circular buffer mode.
            # This makes sure the max_s for the decode pass is correct.
            max_s = min(self.max_past(), max_s)

        bs = input_ids.shape[0]
        # Try to find an associated cuda graph
Nicolas Patry's avatar
Nicolas Patry committed
318
319
320
321
322
323
324
        bs = input_ids.shape[0]
        sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs])
        if sorted_padded_bs:
            # Get associated cuda graph
            cuda_graph = self.cuda_graphs[sorted_padded_bs[0]]
        else:
            cuda_graph = None
325
326
327
328
329
330
331
332
333
334
335
336
337
        if cu_seqlen_prefill is not None or cuda_graph is None:
            logits, speculative_logits = self.model.forward(
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=cu_seqlen_prefill,
                kv_cache=kv_cache,
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
                prefill_cache_indices=batch.prefill_cache_indices,
                lm_head_indices=lm_head_indices,
                pixel_values=batch.pixel_values,
Nicolas Patry's avatar
Nicolas Patry committed
338
                pixel_attention_mask=batch.pixel_attention_mask,
339
340
341
342
343
344
                image_sizes=batch.image_sizes,
            )
            if batch.prefill_cache_indices is not None:
                batch.prefill_cache_indices = None
            if batch.pixel_values is not None:
                batch.pixel_values = None
Nicolas Patry's avatar
Nicolas Patry committed
345
346
            if batch.pixel_attention_mask is not None:
                batch.pixel_attention_mask = None
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
            if batch.image_sizes is not None:
                batch.image_sizes = None
            return logits, speculative_logits

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
        cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
        cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
        cuda_graph["block_tables"][
            : block_tables.shape[0], : block_tables.shape[1]
        ] = block_tables
        cuda_graph["slots"].fill_(-1)
        cuda_graph["slots"][: slots.shape[0]] = slots
        cuda_graph["input_lengths"].zero_()
        cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths

        # Replay the graph
        cuda_graph["graph"].replay()

        # Slice output to the correct shape
        speculative_logits = (
            cuda_graph["speculative_logits"][:bs]
            if cuda_graph["speculative_logits"] is not None
            else None
        )
        logits = cuda_graph["logits"][:bs]
        return logits, speculative_logits