mamba.py 24.1 KB
Newer Older
drbh's avatar
drbh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
import torch
import torch.distributed
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from typing import Optional
from text_generation_server.models.custom_modeling.mamba_modeling import (
    MambaConfig,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)
import time
from text_generation_server.models.custom_modeling.mamba_modeling import MambaModel
from text_generation_server.models import Model
from typing import Any, List, Optional, Tuple, Type, Dict
from text_generation_server.models.types import (
    Batch,
    Tokens,
    Generation,
    GeneratedText,
)
from text_generation_server.utils.tokens import batch_top_tokens, Sampling
from dataclasses import dataclass
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
from mamba_ssm.utils.generation import InferenceParams

@dataclass
class MambaBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
    requests_idx_mapping: Dict[int, int]

    # Decoder values
    input_ids: torch.Tensor

    # All tokens
    all_input_ids: List[torch.Tensor]

    # Lengths of all generations present in the batch
    input_lengths: List[int]
    prefix_offsets: List[int]
    read_offsets: List[int]

    # Generation helpers
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]
    top_n_tokens: List[int]
    top_n_tokens_tensor: torch.Tensor

    # Metadata used for padding
    max_input_length: int
    padding_right_offset: int

    # Maximum number of tokens this batch will grow to
    max_tokens: int

    # Past metadata
    keys_head_dim_last: bool = True

    # Inference params
    inference_params: Optional[Dict[str, Any]] = None

    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
            id=self.batch_id,
            request_ids=[r.id for r in self.requests],
            size=len(self),
            max_tokens=self.max_tokens,
        )
    
    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "MambaBatch":
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        prefix_offsets = []
        read_offsets = []
        requests_idx_mapping = {}

        # Parse batch
        max_truncation = 0
        padding_right_offset = 0
        max_decode_tokens = 0
        for i, r in enumerate(pb.requests):
            requests_idx_mapping[r.id] = i
            inputs.append(r.inputs)
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(r.top_n_tokens)
            max_truncation = max(max_truncation, r.truncate)
            max_decode_tokens += stopping_criteria.max_new_tokens
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
            )

        tokenized_inputs = tokenizer(
            inputs,
            return_tensors="pt",
            padding=True,
            return_token_type_ids=False,
            truncation=True,
            max_length=max_truncation,
        ).to(device)
        for _ in pb.requests:
            input_len = tokenized_inputs["input_ids"].shape[1]
            prefix_offsets.append(input_len - 5)
            read_offsets.append(input_len)

        input_lengths = tokenized_inputs["attention_mask"].sum(1)
        max_input_length = input_lengths.max()
        input_ids = tokenized_inputs["input_ids"]
        all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )
        max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            # past_input_ids=None,
            all_input_ids=list(all_input_ids),
            input_lengths=input_lengths.tolist(),
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length.item(),
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )

    def filter(self, request_ids: List[int]) -> Optional["MambaBatch"]:
        if len(request_ids) == 0:
            raise ValueError("Batch must have at least one request")
        if len(request_ids) == len(self):
            return self

        keep_indices = []

        # New values after filtering
        requests_idx_mapping = {}
        requests = []
        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        max_input_length = 0

        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []

        total_remaining_decode_tokens = 0
        new_padding_right_offset = 0

        indices = []
        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
            requests_idx_mapping[request_id] = i
            keep_indices.append(idx)

            requests.append(self.requests[idx])
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
            all_input_ids.append(self.all_input_ids[idx])

            request_input_length = self.input_lengths[idx]
            input_lengths.append(request_input_length)
            max_input_length = max(max_input_length, request_input_length)
            indices.append(idx)

            next_token_choosers.append(self.next_token_choosers[idx])
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(self.top_n_tokens[idx])
            remaining_decode_tokens = (
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
            total_remaining_decode_tokens += remaining_decode_tokens
            new_padding_right_offset = max(
                new_padding_right_offset, remaining_decode_tokens
            )
    
        # Apply indices to input_ids, attention mask, past key values and other items that need to be cached
        input_ids = self.input_ids[keep_indices]

        top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
        max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens

        self.requests = requests
        self.requests_idx_mapping = requests_idx_mapping
        self.input_ids = input_ids
        self.all_input_ids = all_input_ids
        self.input_lengths = input_lengths
        self.prefix_offsets = prefix_offsets
        self.read_offsets = read_offsets
        self.next_token_choosers = next_token_choosers
        self.stopping_criterias = stopping_criterias
        self.top_n_tokens = top_n_tokens
        self.top_n_tokens_tensor = top_n_tokens_tensor
        self.max_input_length = max_input_length
        self.padding_right_offset = new_padding_right_offset
        self.max_tokens = max_tokens

        # TODO 
        # Kept it simple by just updating the state, maybe updating the other CPU values is necessary.
        key_value_memory_dict = {}
        for i, (conv_state, ssm_state) in self.inference_params.key_value_memory_dict.items():
            key_value_memory_dict[i] = (conv_state[indices], ssm_state[indices])
        self.inference_params.key_value_memory_dict = key_value_memory_dict

        return self

    @classmethod
    def concatenate(cls, batches: List["MambaBatch"]) -> "MambaBatch":
        # Used for padding
        total_batch_size = 0
        max_input_length = 0
        padding_right_offset = 0
        for batch in batches:
            total_batch_size += len(batch)
            max_input_length = max(max_input_length, batch.max_input_length)
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)

        # Batch attributes
        requests = []
        requests_idx_mapping = {}
        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        max_tokens = 0
        max_seqlen = 0
        batch_size = 0
        seqlen_offset = 0

        # Batch tensors
        input_ids = None
        top_n_tokens_tensor = None

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
            all_input_ids.extend(batch.all_input_ids)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)
            top_n_tokens.extend(batch.top_n_tokens)

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + start_index

            # Slicing end index for this batch
            end_index = start_index + len(batch)

            # Create empty tensor
            # input_ids is always of shape [batch_size, 1]
            # We do not need to pad it
            if input_ids is None:
                input_ids = batch.input_ids.new_empty((total_batch_size, 1))
            # Copy to correct indices
            input_ids[start_index:end_index] = batch.input_ids

            if top_n_tokens_tensor is None:
                top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
                    total_batch_size,
                )
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor

            # Add eventual padding tokens that were added while concatenating
            max_tokens += batch.max_tokens + (
                max_input_length - batch.max_input_length
            ) * len(batch)

            max_seqlen = max(max_seqlen, batch.inference_params.max_seqlen)
            seqlen_offset = max(seqlen_offset, batch.inference_params.seqlen_offset)
            batch_size += batch.inference_params.max_batch_size

            start_index = end_index


        (_, d_model, d_conv) = batches[0].inference_params.key_value_memory_dict[0][0].shape
        (_, _, d_state) = batches[0].inference_params.key_value_memory_dict[0][1].shape
        n_blocks = len(batches[0].inference_params.key_value_memory_dict)
        dtype = batches[0].inference_params.key_value_memory_dict[0][0].dtype
        device = batches[0].inference_params.key_value_memory_dict[0][0].device

        key_value_memory_dict = {}
        for i in range(n_blocks):
            conv_state = torch.zeros(
                batch_size,
                d_model,
                d_conv,
                device=device,
                dtype=dtype,
            )
            ssm_state = torch.zeros(
                batch_size,
                d_model,
                d_state,
                device=device,
                dtype=dtype,
            )
            key_value_memory_dict[i] = (conv_state, ssm_state)
        lengths_per_sample = torch.zeros(batch_size, dtype=torch.int32, device=device)

        inference_params = InferenceParams(
            max_seqlen=max_seqlen,
            max_batch_size=batch_size,
            seqlen_offset=seqlen_offset,
            key_value_memory_dict=key_value_memory_dict,
            lengths_per_sample=lengths_per_sample,
        )

        current_batch = 0
        for batch in batches:
            for i in range(n_blocks):
                conv_state, ssm_state = batch.inference_params.key_value_memory_dict[i]
                batch_size = batch.inference_params.max_batch_size
                inference_params.key_value_memory_dict[i][0][current_batch:current_batch + batch_size] = conv_state
                inference_params.key_value_memory_dict[i][1][current_batch:current_batch + batch_size] = ssm_state
                inference_params.lengths_per_sample[current_batch: current_batch + batch_size] = batch.inference_params.lengths_per_sample
            current_batch += batch_size

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            all_input_ids=all_input_ids,
            input_lengths=input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length,
            padding_right_offset=padding_right_offset,
            keys_head_dim_last=batches[0].keys_head_dim_last,
            max_tokens=max_tokens,
            inference_params=inference_params
        )

    def __len__(self):
        return len(self.requests)

class Mamba(Model):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
        self.process_group, _rank, _world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.float16 if dtype is None else dtype
        else:
            if quantize:
                raise ValueError("quantization is not available on CPU")

            device = torch.device("cpu")
            dtype = torch.float32 if dtype is None else dtype

        tokenizer = AutoTokenizer.from_pretrained(
            "EleutherAI/gpt-neox-20b",
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        config = MambaConfig.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )

        tokenizer.bos_token_id = config.bos_token_id
        tokenizer.eos_token_id = config.eos_token_id
        tokenizer.pad_token = tokenizer.eos_token

        config.quantize = quantize
        torch.distributed.barrier(group=self.process_group)
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        model = MambaModel(config, weights)
        torch.distributed.barrier(group=self.process_group)
        super(Mamba, self).__init__(
            model=model,
            tokenizer=tokenizer,
            requires_padding=True,
            dtype=dtype,
            device=device,
        )

    @property
    def batch_type(self) -> Type[MambaBatch]:
        return MambaBatch

    def warmup(self, batch) -> Optional[int]:
        # TODO: implement warmup for Mamba if needed
        return None
    
    def forward(
        self,
        input_ids: torch.Tensor,
        past: Optional[List[torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        return self.model(
            input_ids,
            past=past,
        )

    def generate_token(self, batch) -> Tuple[List[Any], Optional[Any], Tuple[int, int]]:
        start = time.time_ns()
        input_ids = batch.input_ids # batch.past_input_ids if batch.past_input_ids is not None else batch.input_ids

        batch_size = input_ids.shape[0]
        max_seqlen = input_ids.shape[1]
        dtype = input_ids.dtype

        # Inference params
        seqlen_og = 0
        inf_cache = {}
        lengths_per_sample = torch.ones(batch_size, dtype=torch.int32, device=input_ids.device) * max_seqlen
        
        if batch.inference_params is None:
            inference_params = InferenceParams(
                max_seqlen=max_seqlen,
                max_batch_size=batch_size,
                seqlen_offset=seqlen_og,
                key_value_memory_dict=inf_cache,
                lengths_per_sample=lengths_per_sample,
            )

            # Allocate inference cache
            for res_block in self.model.blocks:
                block = res_block.mamba_block
                conv_state = torch.zeros(
                    batch_size,
                    self.model.config.d_model * self.model.config.expand,
                    self.model.config.d_conv,
                    device=block.conv1d.weight.device,
                    dtype=block.conv1d.weight.dtype,
                )
                ssm_state = torch.zeros(
                    batch_size,
                    self.model.config.d_model * self.model.config.expand,
                    self.model.config.d_state,
                    device=block.dt_proj.weight.device,
                    dtype=block.dt_proj.weight.dtype,
                )
                inference_params.key_value_memory_dict[block.layer_idx] = (conv_state, ssm_state)
            batch.inference_params = inference_params
        
        # Forward pass
        logits, past_input_ids, new_inference_params = self.model(input_ids, batch.inference_params)

        batch.inference_params = new_inference_params
        # Results
        generations: List[Generation] = []
        stopped = True

        # Speculation is not active for causal
        accepted_ids = torch.ones_like(batch.input_ids)[:, 0]
        batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
            batch.top_n_tokens,
            batch.top_n_tokens_tensor,
            torch.log_softmax(logits[:, -1], -1),
            accepted_ids,
        )

        start_decode = time.time_ns()

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.prefix_offsets,
            batch.read_offsets,
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
            batch.top_n_tokens,
            batch_top_token_ids,
            batch_top_token_logprobs,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            prefix_offset,
            read_offset,
            logits,
            next_token_chooser,
            stopping_criteria,
            all_input_ids,
            top_n_tokens,
            top_token_ids,
            top_token_logprobs,
        ) in enumerate(iterator):
            # Select next token
            next_token_id, logprobs = next_token_chooser(
                all_input_ids.view(1, -1), logits[-1:, :]
            )

            # Append next token to all tokens
            all_input_ids = torch.cat([all_input_ids, next_token_id])
            new_input_length = input_length + 1

            # Generated token
            next_token_logprob = logprobs[-1, next_token_id]
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_text, prefix_offset, read_offset = self.decode_token(
                all_input_ids[:, 0], prefix_offset, read_offset
            )

            # Evaluate stopping criteria
            stop, reason = stopping_criteria(
                next_token_id_squeezed,
                next_token_text,
            )

            if not stop:
                stopped = False

            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
                    output_text, _, _ = self.decode_token(
                        all_input_ids[:, 0],
                        prefix_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens
                        - 1,
                        read_offset=len(all_input_ids) - stopping_criteria.current_tokens,
                        skip_special_tokens=True,
                    )
                    # Get seed
                    if isinstance(next_token_chooser.choice, Sampling):
                        seed = next_token_chooser.choice.seed
                    else:
                        seed = None

                    generated_text = GeneratedText(
                        output_text, stopping_criteria.current_tokens, reason, seed
                    )
                else:
                    generated_text = None

                if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
                    # Remove generated token to only have prefill and add nan for first prompt token
                    prefill_logprobs = [float("nan")] + torch.log_softmax(
                        logits, -1
                    ).gather(1, all_input_ids[1:]).squeeze(1)[
                        -new_input_length:-1
                    ].tolist()
                    prefill_token_ids = all_input_ids[-new_input_length:-1]
                    prefill_texts = self.tokenizer.batch_decode(
                        prefill_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
                    prefill_tokens = Tokens(
                        prefill_token_ids,
                        prefill_logprobs,
                        prefill_texts,
                        is_special=[],
                    )
                else:
                    prefill_tokens = None

                if top_n_tokens > 0:
                    toptoken_texts = self.tokenizer.batch_decode(
                        top_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
                    special_toptokens = [
                        token_id in self.all_special_ids for token_id in top_token_ids
                    ]
                    top_tokens = Tokens(
                        top_token_ids,
                        top_token_logprobs,
                        toptoken_texts,
                        special_toptokens,
                    )
                else:
                    top_tokens = None

                generation = Generation(
                    request.id,
                    prefill_tokens,
                    Tokens(
                        [next_token_id_squeezed],
                        [next_token_logprob],
                        [next_token_text],
                        [next_token_id_squeezed.item() in self.all_special_ids],
                    ),
                    generated_text,
                    top_tokens,
                )

                generations.append(generation)

                # Update values
                batch.input_ids[i, 0] = next_token_id
                batch.all_input_ids[i] = all_input_ids
                batch.input_lengths[i] = new_input_length
                batch.prefix_offsets[i] = prefix_offset
                batch.read_offsets[i] = read_offset
                batch.max_input_length = max(batch.max_input_length, new_input_length)

        # We finished all generations in the batch; there is no next batch
        if stopped:
            forward_ns = start_decode - start
            decode_ns = time.time_ns() - start_decode
            return generations, None, (forward_ns, decode_ns)

        # Slice unused values from prefill
        batch.input_ids = batch.input_ids[:, :1]

        forward_ns = start_decode - start
        decode_ns = time.time_ns() - start_decode
        return generations, batch, (forward_ns, decode_ns)