clip.py 30.4 KB
Newer Older
1
from typing import Optional, Tuple
2
3
4
5
6
7
8
9
10
11
12
13
14
15

import torch
from torch import nn

from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import (
    _create_4d_causal_attention_mask,
    _prepare_4d_attention_mask,
)
from transformers.modeling_outputs import (
    BaseModelOutputWithPooling,
)
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig

Nicolas Patry's avatar
Nicolas Patry committed
16
from text_generation_server.layers import (
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    TensorParallelEmbedding,
    TensorParallelColumnLinear,
    TensorParallelRowLinear,
)


class CLIPVisionEmbeddings(nn.Module):
    def __init__(self, prefix, config: CLIPVisionConfig, weights):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        # TODO Should we TP this ?
        self.class_embedding = weights.get_tensor(f"{prefix}.class_embedding")

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            bias=False,
        )
        self.patch_embedding.weight = nn.Parameter(
            weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches + 1
        self.position_embedding = TensorParallelEmbedding(
            prefix=f"{prefix}.position_embedding", weights=weights
        )
        self.register_buffer(
            "position_ids",
            torch.arange(self.num_positions, device=weights.device).expand((1, -1)),
            persistent=False,
        )

    def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
        batch_size = pixel_values.shape[0]
        target_dtype = self.patch_embedding.weight.dtype
        patch_embeds = self.patch_embedding(
            pixel_values.to(dtype=target_dtype)
        )  # shape = [*, width, grid, grid]
        patch_embeds = patch_embeds.flatten(2).transpose(1, 2)

        class_embeds = self.class_embedding.expand(batch_size, 1, -1)
        embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
        embeddings = embeddings + self.position_embedding(self.position_ids)
        return embeddings


class CLIPTextEmbeddings(nn.Module):
    def __init__(self, config: CLIPTextConfig):
        super().__init__()
        embed_dim = config.hidden_size

        self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
        self.position_embedding = nn.Embedding(
            config.max_position_embeddings, embed_dim
        )

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer(
            "position_ids",
            torch.arange(config.max_position_embeddings).expand((1, -1)),
            persistent=False,
        )

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
        seq_length = (
            input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
        )

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if inputs_embeds is None:
            inputs_embeds = self.token_embedding(input_ids)

        position_embeddings = self.position_embedding(position_ids)
        embeddings = inputs_embeds + position_embeddings

        return embeddings


class CLIPAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, prefix, config, weights):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_size = self.embed_dim // self.num_heads
        if self.head_size * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.num_heads = self.num_heads // weights.process_group.size()
        self.embed_dim = self.embed_dim // weights.process_group.size()
        self.scale = self.head_size**-0.5
        self.dropout = config.attention_dropout

        self.qkv = TensorParallelColumnLinear.load_multi(
            config,
            prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
            dim=0,
            weights=weights,
            bias=True,
        )
        self.out_proj = TensorParallelRowLinear.load(
            config,
            prefix=f"{prefix}.out_proj",
            weights=weights,
            bias=True,
        )

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return (
            tensor.view(bsz, seq_len, self.num_heads, self.head_size)
            .transpose(1, 2)
            .contiguous()
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        bsz, tgt_len, _ = hidden_states.size()

        # get query proj

        qkv = self.qkv(hidden_states)
        query_states, key_states, value_states = qkv.split(
            [
                self.head_size * self.num_heads,
            ]
            * 3,
            dim=2,
        )
        query_states = query_states * self.scale
        key_states = self._shape(key_states, -1, bsz)
        value_states = self._shape(value_states, -1, bsz)

        proj_shape = (bsz * self.num_heads, -1, self.head_size)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.size()}"
            )

        # apply the causal_attention_mask first
        if causal_attention_mask is not None:
            if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
                    f" {causal_attention_mask.size()}"
                )
            attn_weights = (
                attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
                + causal_attention_mask
            )
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = (
                attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
                + attention_mask
            )
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        attn_probs = nn.functional.dropout(
            attn_weights, p=self.dropout, training=self.training
        )

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_size):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_size)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_size)
        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, None


class CLIPMLP(nn.Module):
    def __init__(self, prefix, config, weights):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = TensorParallelColumnLinear.load(
            prefix=f"{prefix}.fc1", config=config, weights=weights, bias=True
        )
        self.fc2 = TensorParallelRowLinear.load(
            prefix=f"{prefix}.fc2", config=config, weights=weights, bias=True
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class CLIPEncoderLayer(nn.Module):
    def __init__(self, prefix, config: CLIPConfig, weights):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.self_attn = CLIPAttention(
            prefix=f"{prefix}.self_attn", config=config, weights=weights
        )
        self.layer_norm1 = nn.LayerNorm.load(
            prefix=f"{prefix}.layer_norm1", weights=weights, eps=config.layer_norm_eps
        )
        self.mlp = CLIPMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
        self.layer_norm2 = nn.LayerNorm.load(
            prefix=f"{prefix}.layer_norm2", weights=weights, eps=config.layer_norm_eps
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        causal_attention_mask: torch.Tensor,
    ):
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
                `(config.encoder_attention_heads,)`.
        """
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            causal_attention_mask=causal_attention_mask,
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        return hidden_states


class CLIPPreTrainedModel(nn.Module):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CLIPConfig
    base_model_prefix = "clip"
    supports_gradient_checkpointing = True


CLIP_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

CLIP_TEXT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
"""

CLIP_VISION_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
"""

CLIP_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
        return_loss (`bool`, *optional*):
            Whether or not to return the contrastive loss.
"""


class CLIPEncoder(nn.Module):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`CLIPEncoderLayer`].

    Args:
        config: CLIPConfig
    """

    def __init__(self, prefix, config: CLIPConfig, weights):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList(
            [
                CLIPEncoderLayer(
                    prefix=f"{prefix}.layers.{i}", config=config, weights=weights
                )
                for i in range(config.num_hidden_layers)
            ]
        )

    def forward(
        self,
        inputs_embeds,
        attention_mask: Optional[torch.Tensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
    ):
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Causal mask for the text model. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
        """

        hidden_states = inputs_embeds
        for idx, encoder_layer in enumerate(self.layers):
            hidden_states = encoder_layer(
                hidden_states,
                attention_mask,
                causal_attention_mask,
            )

        return hidden_states


class CLIPTextTransformer(nn.Module):
447
    def __init__(self, prefix: str, config: CLIPTextConfig, weights=None):
448
449
450
451
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size
        self.embeddings = CLIPTextEmbeddings(config)
452
        # Initialize weights and apply final processing with `self.post_init()`
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        self.encoder = CLIPEncoder(
            prefix=f"{prefix}.encoder", config=config, weights=weights
        )
        self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

        # For `pooled_output` computation
        self.eos_token_id = config.eos_token_id

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
    ):
        r"""
        Returns:

        """
        if input_ids is None:
            raise ValueError("You have to specify input_ids")

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_shape[-1])

        hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)

        # CLIP's text model uses causal mask, prepare it here.
        # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
        causal_attention_mask = _create_4d_causal_attention_mask(
            input_shape, hidden_states.dtype, device=hidden_states.device
        )
        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _prepare_4d_attention_mask(
                attention_mask, hidden_states.dtype
            )

        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            attention_mask=attention_mask,
            causal_attention_mask=causal_attention_mask,
        )

        last_hidden_state = encoder_outputs[0]
        last_hidden_state = self.final_layer_norm(last_hidden_state)

        if self.eos_token_id == 2:
            # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
            # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
            # ------------------------------------------------------------
            # text_embeds.shape = [batch_size, sequence_length, transformer.width]
            # take features from the eot embedding (eot_token is the highest number in each sequence)
            # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
507
            last_hidden_state[
508
509
510
511
512
513
514
515
516
                torch.arange(
                    last_hidden_state.shape[0], device=last_hidden_state.device
                ),
                input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(
                    dim=-1
                ),
            ]
        else:
            # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
517
            last_hidden_state[
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
                torch.arange(
                    last_hidden_state.shape[0], device=last_hidden_state.device
                ),
                # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
                (
                    input_ids.to(dtype=torch.int, device=last_hidden_state.device)
                    == self.eos_token_id
                )
                .int()
                .argmax(dim=-1),
            ]

        return last_hidden_state


class CLIPTextModel(CLIPPreTrainedModel):
    config_class = CLIPTextConfig

    _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]

538
    def __init__(self, prefix, config: CLIPTextConfig):
539
        super().__init__(config)
540
        self.text_model = CLIPTextTransformer(prefix, config)
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
    ):
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, CLIPTextModel

        >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")

        >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")

        >>> outputs = model(**inputs)
        >>> last_hidden_state = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output  # pooled (EOS token) states
        ```"""

        return self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
        )


class CLIPVisionTransformer(nn.Module):
    def __init__(self, prefix, config: CLIPVisionConfig, weights):
        super().__init__()
        self.config = config

        self.embeddings = CLIPVisionEmbeddings(
            prefix=f"{prefix}.embeddings", config=config, weights=weights
        )
        self.pre_layrnorm = nn.LayerNorm.load(
            prefix=f"{prefix}.pre_layrnorm", weights=weights, eps=config.layer_norm_eps
        )
        self.encoder = CLIPEncoder(
            prefix=f"{prefix}.encoder", config=config, weights=weights
        )
        # self.post_layernorm = nn.LayerNorm.load(prefix=f"{prefix}.post_layernorm", weights=weights, eps=config.layer_norm_eps)

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
    ):
        r"""
        Returns:

        """
        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        hidden_states = self.embeddings(pixel_values)
        hidden_states = self.pre_layrnorm(hidden_states)

        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
        )
        last_hidden_state = encoder_outputs
        # pooled_output = last_hidden_state[:, 0, :]
        # pooled_output = self.post_layernorm(pooled_output)

        return BaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            # pooler_output=pooled_output,
            # hidden_states=encoder_outputs,
        )


class CLIPVisionModel(CLIPPreTrainedModel):
    config_class = CLIPVisionConfig
    main_input_name = "pixel_values"
    _no_split_modules = ["CLIPEncoderLayer"]

    def __init__(self, config: CLIPVisionConfig):
        super().__init__(config)
        self.vision_model = CLIPVisionTransformer(config)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Module:
        return self.vision_model.embeddings.patch_embedding

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
    ):
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, CLIPVisionModel

        >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="pt")

        >>> outputs = model(**inputs)
        >>> last_hidden_state = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output  # pooled CLS states
        ```"""

        return self.vision_model(
            pixel_values=pixel_values,
        )


class CLIPModel(nn.Module):
    def __init__(self, prefix, config: CLIPConfig, weights):
        super().__init__()
        text_config = config.text_config
        vision_config = config.vision_config

        self.projection_dim = config.projection_dim
        self.text_embed_dim = text_config.hidden_size
        self.vision_embed_dim = vision_config.hidden_size

        self.text_model = CLIPTextTransformer(text_config)
        self.vision_model = CLIPVisionTransformer(vision_config)

        self.visual_projection = nn.Linear(
            self.vision_embed_dim, self.projection_dim, bias=False
        )
        self.text_projection = nn.Linear(
            self.text_embed_dim, self.projection_dim, bias=False
        )
        self.logit_scale = nn.Parameter(
            torch.tensor(self.config.logit_scale_init_value)
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_text_features(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        r"""
        Returns:
            text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
            applying the projection layer to the pooled output of [`CLIPTextModel`].

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, CLIPModel

        >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")

        >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
        >>> text_features = model.get_text_features(**inputs)
        ```"""
        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
        )

        pooled_output = text_outputs[1]
        text_features = self.text_projection(pooled_output)

        return text_features

    def get_image_features(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        r"""
        Returns:
            image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
            applying the projection layer to the pooled output of [`CLIPVisionModel`].

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, CLIPModel

        >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="pt")

        >>> image_features = model.get_image_features(**inputs)
        ```"""
        # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
        )

        pooled_output = vision_outputs[1]  # pooled_output
        image_features = self.visual_projection(pooled_output)

        return image_features

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
    ):
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, CLIPModel

        >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
        >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(
        ...     text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
        ... )

        >>> outputs = model(**inputs)
        >>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
        >>> probs = logits_per_image.softmax(dim=1)  # we can take the softmax to get the label probabilities
        ```"""
        # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
        )

        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
        )

        image_embeds = vision_outputs[1]
        image_embeds = self.visual_projection(image_embeds)

        text_embeds = text_outputs[1]
        text_embeds = self.text_projection(text_embeds)

        # normalized features
        image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
        text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
        logits_per_image = logits_per_text.t()

        return logits_per_image, logits_per_text