marlin.py 11.1 KB
Newer Older
1
from dataclasses import dataclass
2
from typing import List, Optional, Union
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

import torch
import torch.nn as nn
from text_generation_server.layers.marlin.util import _check_marlin_kernels
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader

try:
    import marlin_kernels
except ImportError:
    marlin_kernels = None


class MarlinWeightsLoader(WeightsLoader):
    """Loader for Marlin-quantized weights."""

    def __init__(self, *, bits: int, is_marlin_24: bool):
        self.bits = bits
        self.is_marlin_24 = is_marlin_24

    def get_weights(self, weights: "Weights", prefix: str):
        """
        Get weights at the given prefix and apply without tensor paralllism.
        """
        is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
        if is_marlin_24:
            try:
                B = weights.get_tensor(f"{prefix}.B_24")
            except RuntimeError:
                raise RuntimeError(
                    "Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
                )

            B_meta = weights.get_tensor(f"{prefix}.B_meta")
            s = weights.get_tensor(f"{prefix}.s")
            weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
        else:
            try:
                B = weights.get_tensor(f"{prefix}.B")
            except RuntimeError:
                raise RuntimeError(
                    "Cannot load `marlin` weight, make sure the model is already quantized."
                )

            s = weights.get_tensor(f"{prefix}.s")
            weight = MarlinWeight(B=B, s=s)

        return weight

    def get_weights_col_packed(
        self,
        weights: Weights,
        prefix: str,
        block_sizes: Union[int, List[int]],
    ):
        if self.is_marlin_24:
            B = weights.get_packed_sharded(
                f"{prefix}.B_24", dim=1, block_sizes=block_sizes
            )
            B_meta = weights.get_packed_sharded(
                f"{prefix}.B_meta", dim=1, block_sizes=block_sizes
            )
            s = weights.get_packed_sharded(
                f"{prefix}.s", dim=1, block_sizes=block_sizes
            )

            weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
        else:
            B = weights.get_packed_sharded(
                f"{prefix}.B", dim=1, block_sizes=block_sizes
            )
            s = weights.get_packed_sharded(
                f"{prefix}.s", dim=1, block_sizes=block_sizes
            )
            weight = MarlinWeight(B=B, s=s)

        return weight

    def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
        if self.is_marlin_24:
            try:
                B = torch.cat(
                    [weights.get_sharded(f"{p}.B_24", dim=1) for p in prefixes], dim=1
                )
            except RuntimeError:
                raise RuntimeError(
88
                    "Cannot load `marlin` weight, make sure the model is already quantized"
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
                )

            B_meta = torch.cat(
                [weights.get_sharded(f"{p}.B_meta", dim=1) for p in prefixes], dim=1
            )

            s = torch.cat(
                [weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
            )

            weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
        else:
            try:
                B = torch.cat(
                    [weights.get_sharded(f"{p}.B", dim=1) for p in prefixes], dim=1
                )
            except RuntimeError:
                raise RuntimeError(
107
                    "Cannot load `marlin` weight, make sure the model is already quantized"
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
                )
            s = torch.cat(
                [weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
            )

            weight = MarlinWeight(B=B, s=s)

        return weight

    def get_weights_row(self, weights: Weights, prefix: str):
        if self.is_marlin_24:
            try:
                B = weights.get_sharded(f"{prefix}.B_24", dim=0)
            except RuntimeError:
                raise RuntimeError(
                    "Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
                )

            B_meta = weights.get_sharded(f"{prefix}.B_meta", dim=0)
            num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
            if num_groups == 1:
                # The number of groups is 1 when groupsize == -1. share
                # scales between all shards in this case.
                s = weights.get_tensor(f"{prefix}.s")
            else:
                s = weights.get_sharded(f"{prefix}.s", dim=0)

            weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
        else:
            try:
                B = weights.get_sharded(f"{prefix}.B", dim=0)
            except RuntimeError:
                raise RuntimeError(
                    "Cannot load `marlin` weight, make sure the model is already quantized."
                )

            num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
            if num_groups == 1:
                # The number of groups is 1 when groupsize == -1. share
                # scales between all shards in this case.
                s = weights.get_tensor(f"{prefix}.s")
            else:
                s = weights.get_sharded(f"{prefix}.s", dim=0)
            weight = MarlinWeight(B=B, s=s)

        return weight


@dataclass
class MarlinWeight(Weight):
    """
    Marlin weights.

    Attributes:
        B (torch.Tensor): int4-quantized weights packed into int32.
        s (torch.Tensor): bfloat16/float16 scales.
    """

    B: torch.Tensor
    s: torch.Tensor

    def __post_init__(self):
        assert self.B.dtype == torch.int32
        assert self.s.dtype in [torch.float16, torch.bfloat16]

    def get_linear(self, bias: torch.Tensor):
        return MarlinLinear(weight=self, bias=bias)


class MarlinLinear(nn.Module):
    def __init__(self, *, weight: MarlinWeight, bias: Optional[torch.Tensor]):
        super().__init__()

        _check_marlin_kernels()
        assert marlin_kernels is not None

        in_features = weight.B.shape[0] * MARLIN_TILE_SIZE
        out_features = weight.s.shape[1]
        assert (
            in_features % 128 == 0
        ), f"Number of input features ({in_features}) not divisable by 128"
        assert (
            out_features % 256 == 0
        ), f"Number of output features ({out_features}) not divisable by 256"

        groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
        assert groupsize in {
            -1,
            128,
        }, f"Group size must be -1 or 128, was {groupsize}"

        self.B = weight.B
        self.s = weight.s
        if bias is not None:
            self.bias = bias
        else:
            self.bias = None

        self.workspace = torch.zeros(
            out_features // 64 * 16, dtype=torch.int, device=weight.B.device
        )

    def forward(self, A: torch.Tensor) -> torch.Tensor:
        assert marlin_kernels is not None

        C = marlin_kernels.marlin_gemm(
            A.view(-1, A.shape[-1]),
            self.B,
            self.s,
            self.workspace,
            A.shape[0],
            self.s.shape[1],
            A.shape[1],
        )
        C = C.reshape(A.shape[:-1] + (self.s.shape[1],))

        if self.bias is not None:
            C += self.bias

        return C


GPTQ_MARLIN_24_MIN_THREAD_N = 128
GPTQ_MARLIN_24_MIN_THREAD_K = 128
GPTQ_MARLIN_24_MAX_PARALLEL = 64
GPTQ_MARLIN_24_SUPPORTED_NUM_BITS = [4, 8]
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES = [-1, 128]
MARLIN_TILE_SIZE = 16


@dataclass
class GPTQMarlin24Weight:
    """
    GPTQ-Marlin 2:4 weights.

    Attributes:
        B (torch.Tensor): int4-quantized weights packed into int32.
        B_meta (torch.Tensor): metadata for 2:4 sparsity.
        s (torch.Tensor): float16 scales.
        bits: quantized weight size.
    """

    B: torch.Tensor
    B_meta: torch.Tensor
    s: torch.Tensor
    bits: int

    def __post_init__(self):
        assert self.B.dtype == torch.int32
        assert self.B_meta.dtype == torch.int16
        assert self.s.dtype == torch.float16

    def get_linear(self, bias: torch.Tensor):
        return GPTQMarlin24Linear(
            weight=self,
            bias=bias,
        )


class GPTQMarlin24Linear(nn.Module):
    def __init__(self, *, weight: GPTQMarlin24Weight, bias: Optional[torch.Tensor]):
        super().__init__()

        _check_marlin_kernels()
        assert marlin_kernels is not None

        if weight.bits not in GPTQ_MARLIN_24_SUPPORTED_NUM_BITS:
            supported_bits = ", ".join(
                str(b) for b in GPTQ_MARLIN_24_SUPPORTED_NUM_BITS
            )
            raise RuntimeError(
                f"{weight.bits}-bit GPTQ Sparse 2:4 Marlin is not supported, must be one of: {supported_bits}"
            )

        in_features = weight.B.shape[0] * MARLIN_TILE_SIZE * 2
        out_features = weight.s.shape[1]
        groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]

        if groupsize not in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES:
            supported_sizes = ", ".join(
                str(b) for b in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
            )
            raise RuntimeError(
                f"Group size {groupsize} is not supported, must be one of: {supported_sizes}"
            )

        self.bits = weight.bits
        weights_per_int32 = 32 // self.bits

        assert (
            out_features % GPTQ_MARLIN_24_MIN_THREAD_N == 0
        ), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_N} threads"
        assert (
            out_features % weights_per_int32 == 0
        ), f"Number of output features ({out_features}) not divisable by weights per int32 ({weights_per_int32})"

        assert (
            in_features % GPTQ_MARLIN_24_MIN_THREAD_K == 0
        ), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_K} threads"
        if groupsize != -1 and in_features % groupsize != 0:
            raise ValueError(
                f"Number of input features ({in_features}) not divisable by group size ({groupsize})"
            )

        self.B = weight.B
        self.B_meta = weight.B_meta
        self.s = weight.s
        if bias is not None:
            self.bias = bias
        else:
            self.bias = None

        self.workspace = torch.zeros(
            (out_features // GPTQ_MARLIN_24_MIN_THREAD_N) * GPTQ_MARLIN_24_MAX_PARALLEL,
            dtype=torch.int,
            device=weight.B.device,
        )

    def forward(self, A: torch.Tensor) -> torch.Tensor:
        assert marlin_kernels is not None

        C = marlin_kernels.gptq_marlin_24_gemm(
            A.view(-1, A.shape[-1]),
            self.B,
            self.B_meta,
            self.s,
            self.workspace,
            self.bits,
            A.shape[0],
            self.s.shape[1],
            A.shape[1],
        )

        C = C.reshape(A.shape[:-1] + (self.s.shape[1],))

        if self.bias is not None:
            C += self.bias

        return C