idefics_causal_lm.py 30.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import torch
import inspect
import re
from io import BytesIO
import base64
from PIL import Image
import re

from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase, ProcessorMixin
from typing import Optional, Tuple, List, Type, Dict

from text_generation_server.models import Model
from text_generation_server.models.types import (
    Batch,
    PrefillTokens,
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling

import re

IMAGES = re.compile(r'!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)')

def split(string):
    parts = []
    cursor = 0
    for pattern in IMAGES.finditer(string):
        start = pattern.start()
        if start != cursor:
            parts.append(string[cursor:start])

        parts.append(pattern.group(1))
        cursor = pattern.end()

    if cursor != len(string):
        parts.append(string[cursor:])

    return parts

tracer = trace.get_tracer(__name__)


@dataclass
class IdeficsCausalLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
    requests_idx_mapping: Dict[int, int]

    # Decoder values
    input_ids: torch.Tensor
    attention_mask: torch.Tensor
    position_ids: torch.Tensor
    pixel_values: Optional[torch.Tensor]
    image_hidden_states: Optional[torch.Tensor]
    image_attention_mask: Optional[torch.Tensor]
    past_key_values: Optional[List[Tuple]]

    # All tokens
    all_input_ids: List[torch.Tensor]

    # Lengths of all generations present in the batch
    input_lengths: List[int]
    prefix_offsets: List[int]
    read_offsets: List[int]

    # Generation helpers
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

    # Metadata used for padding
    max_input_length: int
    padding_right_offset: int

    # Maximum number of tokens this batch will grow to
    max_tokens: int

    # Past metadata
    keys_head_dim_last: bool = True

    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
            id=self.batch_id,
            request_ids=[r.id for r in self.requests],
            size=len(self),
            max_tokens=self.max_tokens,
        )

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        processor: ProcessorMixin, # Hack
        dtype: torch.dtype,
        device: torch.device,
    ) -> "IdeficsCausalLMBatch":
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        prefix_offsets = []
        read_offsets = []
        requests_idx_mapping = {}

        # Parse batch
        max_truncation = 0
        padding_right_offset = 0
        max_decode_tokens = 0
        for i, r in enumerate(pb.requests):
            requests_idx_mapping[r.id] = i
            inputs.append(r.inputs)
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            max_truncation = max(max_truncation, r.truncate)
            max_decode_tokens += stopping_criteria.max_new_tokens
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
            )

        prompts = []
        for inp in inputs:
            # Each input is encoded into a list, where each element of this input list is either a string or a URL
            prompts.append(split(inp))

        # The processor replaces the call to tokenizer, and
        # a/ takes care of fetching images from the URL
        # b/ generate the correct input_ids, attention_mask, pixel_values, image_attention_mask to feed to the model
        tokenized_inputs = processor(
            prompts,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=max_truncation,
            add_end_of_utterance_token=False, # Already taken care of inside the prompts, so bypassing the processor's handling of this token
        ).to(device)
        for _ in pb.requests:
            input_len = tokenized_inputs["input_ids"].shape[1]
            prefix_offsets.append(input_len - 5) # To decode without potential fallbacks errors
            read_offsets.append(input_len) # To decode without potential fallbacks errors

        input_lengths = tokenized_inputs["attention_mask"].sum(1)
        max_input_length = input_lengths.max()

        input_ids = tokenized_inputs["input_ids"]
        pixel_values = tokenized_inputs["pixel_values"]
        image_hidden_states = None
        # Allocate maximum attention_mask
        attention_mask = input_ids.new_zeros(
            (pb.size, max_input_length + padding_right_offset)
        )
        # Copy tokenizer attention_mask into fully allocated attention_mask
        attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
        # Do the same for image_attention_mask
        image_attention_mask = input_ids.new_zeros(
            (pb.size, max_input_length + padding_right_offset, tokenized_inputs["pixel_values"].size(1))
        )
        image_attention_mask[:, :max_input_length, :] = tokenized_inputs["image_attention_mask"]


        position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
        position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
        all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1) # It's input_ids but splitted into a tuple of tensors where each tensor is (seq_len, 1) size. It is then transformed into a list

        max_tokens = len(inputs) * (max_input_length + max_decode_tokens)

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            pixel_values=pixel_values,
            image_hidden_states=image_hidden_states,
            image_attention_mask=image_attention_mask,
            past_key_values=None,
            all_input_ids=list(all_input_ids),
            input_lengths=input_lengths.tolist(),
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            max_input_length=max_input_length.item(),
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )

    @tracer.start_as_current_span("filter")
    def filter(self, request_ids: List[int]) -> Optional["IdeficsCausalLMBatch"]:
        # It deletes requests from the batch. For instance when client lost connection
        if len(request_ids) == 0:
            raise ValueError("Batch must have at least one request")
        if len(request_ids) == len(self):
            return self

        keep_indices = []

        # New values after filtering
        requests_idx_mapping = {}
        requests = []
        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        max_input_length = 0

        next_token_choosers = []
        stopping_criterias = []

        total_remaining_decode_tokens = 0
        new_padding_right_offset = 0

        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
            requests_idx_mapping[request_id] = i
            keep_indices.append(idx)

            requests.append(self.requests[idx])
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
            all_input_ids.append(self.all_input_ids[idx])

            request_input_length = self.input_lengths[idx]
            input_lengths.append(request_input_length)
            max_input_length = max(max_input_length, request_input_length)

            next_token_choosers.append(self.next_token_choosers[idx])
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
            remaining_decode_tokens = (
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
            total_remaining_decode_tokens += remaining_decode_tokens
            new_padding_right_offset = max(
                new_padding_right_offset, remaining_decode_tokens
            )

        # Apply indices to input_ids, attention mask, past key values and other items that need to be cached
        input_ids = self.input_ids[keep_indices]
        position_ids = self.position_ids[keep_indices]
        self.attention_mask = self.attention_mask[
            keep_indices,
            -(self.padding_right_offset + max_input_length) : (
                self.attention_mask.shape[1] - self.padding_right_offset
            )
            + new_padding_right_offset,
        ]
        # Do the same for pixel_values and image_attention_mask
        pixel_values = self.pixel_values[keep_indices]
        self.image_attention_mask = self.image_attention_mask[
            keep_indices,
            -(self.padding_right_offset + max_input_length) : (
                self.image_attention_mask.shape[1] - self.padding_right_offset
            )
            + new_padding_right_offset,
            :
        ]
        if self.image_hidden_states is None:
            image_hidden_states = None
        else:
            image_hidden_states = self.image_hidden_states[keep_indices]

        # Ensure that past_key_values tensors can be updated in-place
        if type(self.past_key_values[0]) == tuple:
            self.past_key_values = [list(layer) for layer in self.past_key_values]

        # Update tensors in-place to allow incremental garbage collection
        past_kv_length = max_input_length - 1
        for layer in self.past_key_values:
            past_keys, past_values = layer
            if len(past_keys.shape) == 3:
                # Force past to be of dim [self_size, num_heads, ...] for easy indexing
                past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
                past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
            if self.keys_head_dim_last:
                layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
            else:
                layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
            del past_keys
            layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
            del past_values

        max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens

        self.requests = requests
        self.requests_idx_mapping = requests_idx_mapping
        self.input_ids = input_ids
        self.pixel_values = pixel_values
        self.image_hidden_states = image_hidden_states
        self.position_ids = position_ids
        self.all_input_ids = all_input_ids
        self.input_lengths = input_lengths
        self.prefix_offsets = prefix_offsets
        self.read_offsets = read_offsets
        self.next_token_choosers = next_token_choosers
        self.stopping_criterias = stopping_criterias
        self.max_input_length = max_input_length
        self.padding_right_offset = new_padding_right_offset
        self.max_tokens = max_tokens

        return self

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["IdeficsCausalLMBatch"]) -> "IdeficsCausalLMBatch":
        # It adds new requests to the batch
        # Used for padding
        total_batch_size = 0
        max_input_length = 0
        max_num_images = 0
        padding_right_offset = 0
        for batch in batches:
            total_batch_size += len(batch)
            max_input_length = max(max_input_length, batch.max_input_length)
            max_num_images = max(max_num_images, batch.pixel_values.size(1))
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)

        # Batch attributes
        requests = []
        requests_idx_mapping = {}
        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        next_token_choosers = []
        stopping_criterias = []
        max_tokens = 0

        # Batch tensors
        input_ids = None
        attention_mask = None
        position_ids = None
        pixel_values = None
        image_hidden_states = None
        image_attention_mask = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
            all_input_ids.extend(batch.all_input_ids)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + start_index

            # Slicing end index for this batch
            end_index = start_index + len(batch)

            # We only concatenate batches that did at least one step
            if batch.past_key_values is None:
                raise ValueError("only concatenate prefilled batches")

            # Create empty tensor
            # input_ids is always of shape [batch_size, 1]
            # We do not need to pad it
            if input_ids is None:
                input_ids = batch.input_ids.new_empty((total_batch_size, 1))
            # Copy to correct indices
            input_ids[start_index:end_index] = batch.input_ids

            # Create padded tensor
            if attention_mask is None:
                attention_mask = batch.attention_mask.new_zeros(
                    (total_batch_size, max_input_length + padding_right_offset),
                )

            curr_batch_max_num_images = batch.pixel_values.size(1)
            if pixel_values is None:
                pixel_values = batch.pixel_values.new_zeros((total_batch_size, max_num_images, 3, 224, 224))
            pixel_values[start_index:end_index, :curr_batch_max_num_images] = batch.pixel_values

            if image_attention_mask is None:
                image_attention_mask = batch.image_attention_mask.new_zeros(
                    (total_batch_size, max_input_length + padding_right_offset, max_num_images)
                )

            # We need to slice the attention mask to remove padding from previous steps
            # and to remove unused allocated space
            left_offset = max_input_length - batch.max_input_length
            batch_left_offset = (
                batch.attention_mask.shape[1]
                - batch.max_input_length
                - batch.padding_right_offset
            )
            attention_mask[
                start_index:end_index,
                left_offset:-padding_right_offset,
            ] = batch.attention_mask[
                :,
                batch_left_offset : -batch.padding_right_offset,
            ]
            image_attention_mask[
                start_index:end_index,
                left_offset:-padding_right_offset,
                :curr_batch_max_num_images
            ] = batch.image_attention_mask[
                :,
                batch_left_offset : - batch.padding_right_offset,
                :
            ]

            # Create empty tensor
            # position_ids is always of shape [batch_size, 1]
            if position_ids is None:
                position_ids = batch.position_ids.new_empty((total_batch_size, 1))
            position_ids[start_index:end_index] = batch.position_ids

            # Shenanigans to get dimensions because BLOOM outputs a past with a different shape
            # BLOOM Keys:   [batch_size * num_heads, head_dim, seq_length]
            # BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
            # And ensure that we can update tensors in-place
            if type(batch.past_key_values[0]) == tuple:
                batch.past_key_values = [
                    [t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
                    for layer in batch.past_key_values
                ]
            elif len(batch.past_key_values[0][0].shape) == 3:
                for layer in batch.past_key_values:
                    for k, t in enumerate(layer):
                        layer[k] = t.view(len(batch), -1, *t.shape[-2:])

            # Add eventual padding tokens that were added while concatenating
            max_tokens += batch.max_tokens + (
                max_input_length - batch.max_input_length
            ) * len(batch)

            start_index = end_index

        first_past_kvs = batches[0].past_key_values
        _, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape

        padded_past_values_shape = (
            total_batch_size,
            num_heads,
            max_input_length - 1,
            head_dim,
        )

        if batches[0].keys_head_dim_last:
            padded_past_keys_shape = padded_past_values_shape
        else:
            # seq_length is last for BLOOM
            padded_past_keys_shape = (
                total_batch_size,
                num_heads,
                head_dim,
                max_input_length - 1,
            )

        # Iterate over attention layers
        # Concatenate past key values layer by layer to allow incremental garbage collection
        for j in range(len(first_past_kvs)):
            padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
            start_index = 0
            for batch in batches:
                past_keys = batch.past_key_values[j][0]
                # Clear reference to the original tensor
                batch.past_key_values[j][0] = None

                # Slicing end index for this batch
                end_index = start_index + len(batch)
                # We slice the keys to remove the padding from previous batches
                past_seq_len = batch.max_input_length - 1
                if batch.keys_head_dim_last:
                    padded_past_keys[
                        start_index:end_index, :, -past_seq_len:, :
                    ] = past_keys[:, :, -past_seq_len:, :]
                else:
                    # BLOOM case
                    padded_past_keys[
                        start_index:end_index, :, :, -past_seq_len:
                    ] = past_keys[:, :, :, -past_seq_len:]
                del past_keys

                start_index = end_index

            padded_past_values = first_past_kvs[j][1].new_zeros(
                padded_past_values_shape
            )
            start_index = 0
            for batch in batches:
                past_values = batch.past_key_values[j][1]
                # Clear reference to the original tensor
                batch.past_key_values[j][1] = None

                # Slicing end index for this batch
                end_index = start_index + len(batch)
                # We slice the past values to remove the padding from previous batches
                past_seq_len = batch.max_input_length - 1
                padded_past_values[
                    start_index:end_index, :, -past_seq_len:, :
                ] = past_values[:, :, -past_seq_len:, :]
                del past_values

                # Update values
                start_index = end_index

            past_key_values.append([padded_past_keys, padded_past_values])

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            pixel_values=pixel_values,
            image_hidden_states=image_hidden_states,
            image_attention_mask=image_attention_mask,
            past_key_values=past_key_values,
            all_input_ids=all_input_ids,
            input_lengths=input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            max_input_length=max_input_length,
            padding_right_offset=padding_right_offset,
            keys_head_dim_last=batches[0].keys_head_dim_last,
            max_tokens=max_tokens,
        )

    def __len__(self):
        return len(self.requests)


class IdeficsCausalLM(Model):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
        from text_generation_server.models.custom_modeling.idefics_modeling import IdeficsForVisionText2Text

        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.float16 if dtype is None else dtype
        else:
            if quantize:
                raise ValueError("quantization is not available on CPU")

            device = torch.device("cpu")
Wang, Yi's avatar
Wang, Yi committed
563
            dtype = torch.float32 if dtype is None else dtype
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

        tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        self.processor = AutoProcessor.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        model = IdeficsForVisionText2Text.from_pretrained(
            model_id,
            revision=revision,
            torch_dtype=dtype,
            device_map="auto"
            if torch.cuda.is_available() and torch.cuda.device_count() > 1
            else None,
            load_in_8bit=quantize == "bitsandbytes",
            trust_remote_code=trust_remote_code,
        )
        if torch.cuda.is_available() and torch.cuda.device_count() == 1:
            model = model.cuda()

        if tokenizer.pad_token_id is None:
            if model.config.pad_token_id is not None:
                tokenizer.pad_token_id = model.config.pad_token_id
            elif model.config.eos_token_id is not None:
                tokenizer.pad_token_id = model.config.eos_token_id
            elif tokenizer.eos_token_id is not None:
                tokenizer.pad_token_id = tokenizer.eos_token_id
            else:
                tokenizer.add_special_tokens({"pad_token": "<unk>"})

        super(IdeficsCausalLM, self).__init__(
            model=model,
            tokenizer=tokenizer,
            requires_padding=True,
            dtype=dtype,
            device=device,
        )

    @property
    def batch_type(self) -> Type[IdeficsCausalLMBatch]:
        return IdeficsCausalLMBatch

    def forward(
        self,
        input_ids,
        attention_mask,
        position_ids,
        pixel_values,
        image_hidden_states,
        image_attention_mask,
        past_key_values: Optional = None,
    ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
        # Model Forward
        kwargs = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "pixel_values": pixel_values,
            "image_hidden_states": image_hidden_states,
            "image_attention_mask": image_attention_mask,
            "past_key_values": past_key_values,
            "use_cache": True,
            "return_dict": True,
        }
        if self.has_position_ids:
            kwargs["position_ids"] = position_ids

        outputs = self.model.forward(**kwargs)
        return outputs.logits, outputs.past_key_values, outputs.image_hidden_states

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: IdeficsCausalLMBatch
    ) -> Tuple[List[Generation], Optional[IdeficsCausalLMBatch]]:
        # slice the attention mask to the correct shape
        attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
        if batch.input_ids.size(1) == 1:
            # THIS is a hack: when calling idefics.generate, the first time, we need the whole image_attention_mask (size bs x max_seq_len x max_num_images),
            # but the subsequent times, we only need the last attention mask along the `max_seq_len` dimension
            # this is due to the nature IDEFICS: it's an encoder decoder, and so when decoding, only the currently generated
            # token need to attend to the encoder hidden states (i.e. the vision encoder)
            # Also see seq2seq_lm.Seq2SeqLM.generate_token which has roughly the same logic
            image_attention_mask = batch.image_attention_mask[:, -(batch.padding_right_offset+1)].unsqueeze(1)
        else:
            image_attention_mask = batch.image_attention_mask[:, : -batch.padding_right_offset]

        logits, past, image_hidden_states = self.forward(
            input_ids=batch.input_ids,
            attention_mask=attention_mask,
            position_ids=batch.position_ids,
            pixel_values=batch.pixel_values,
            image_hidden_states=batch.image_hidden_states,
            image_attention_mask=image_attention_mask,
            past_key_values=batch.past_key_values,
        )
        # Hardcoded remove image tokens
        logits[:, 32000:32001] = torch.finfo(logits.dtype).min

        # Results
        generations: List[Generation] = []
        stopped = True

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.prefix_offsets,
            batch.read_offsets,
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            prefix_offset,
            read_offset,
            logits,
            next_token_chooser,
            stopping_criteria,
            all_input_ids,
        ) in enumerate(iterator):
            # Select next token
            next_token_id, logprobs = next_token_chooser(
                all_input_ids.view(1, -1), logits[-1:, :]
            )

            # Append next token to all tokens
            all_input_ids = torch.cat([all_input_ids, next_token_id])
            new_input_length = input_length + 1

            # Generated token
            next_token_logprob = logprobs[-1, next_token_id]
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_text, prefix_offset, read_offset = self.decode_token(
                all_input_ids[:, 0], prefix_offset, read_offset
            )

            # Evaluate stopping criteria
            stop, reason = stopping_criteria(
                next_token_id_squeezed,
                next_token_text,
            )

            if not stop:
                stopped = False

            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
726
727
728
729
730
                    output_text, _, _ = self.decode_token(
                        all_input_ids[:, 0],
                        prefix_offset=len(all_input_ids) - stopping_criteria.current_tokens - 1,
                        read_offset=len(all_input_ids) - stopping_criteria.current_tokens,
                        skip_special_tokens=True
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
                    )
                    # Get seed
                    if isinstance(next_token_chooser.choice, Sampling):
                        seed = next_token_chooser.choice.seed
                    else:
                        seed = None

                    generated_text = GeneratedText(
                        output_text, stopping_criteria.current_tokens, reason, seed
                    )
                else:
                    generated_text = None

                # Prefill
                if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
                    # Remove generated token to only have prefill and add nan for first prompt token
                    prefill_logprobs = [float("nan")] + torch.log_softmax(
                        logits, -1
                    ).gather(1, all_input_ids[1:]).squeeze(1)[
                        -new_input_length:-1
                    ].tolist()
                    prefill_token_ids = all_input_ids[-new_input_length:-1]
                    prefill_texts = self.tokenizer.batch_decode(
                        prefill_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
                    prefill_tokens = PrefillTokens(
                        prefill_token_ids, prefill_logprobs, prefill_texts
                    )
                else:
                    prefill_tokens = None

Nicolas Patry's avatar
Nicolas Patry committed
764
765
                top_tokens=None

766
767
768
769
770
771
772
773
                generation = Generation(
                    request.id,
                    prefill_tokens,
                    next_token_id_squeezed,
                    next_token_logprob,
                    next_token_text,
                    next_token_id_squeezed.item() in self.all_special_ids,
                    generated_text,
Nicolas Patry's avatar
Nicolas Patry committed
774
                    top_tokens
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
                )

                generations.append(generation)

            # Update values
            batch.input_ids[i, 0] = next_token_id
            batch.all_input_ids[i] = all_input_ids
            batch.input_lengths[i] = new_input_length
            batch.prefix_offsets[i] = prefix_offset
            batch.read_offsets[i] = read_offset
            batch.max_input_length = max(batch.max_input_length, new_input_length)

        # We finished all generations in the batch; there is no next batch
        if stopped:
            return generations, None

        # Slice unused values from prefill
        batch.input_ids = batch.input_ids[:, :1]

        # Update attention_mask as we added a new token to input_ids
        batch.attention_mask[:, -batch.padding_right_offset] = 1
        batch.image_attention_mask[:, -batch.padding_right_offset, :] = batch.image_attention_mask[:, -(batch.padding_right_offset+1), :]
        # Decrease right offset
        batch.padding_right_offset -= 1

        # Update position_ids
        batch.position_ids = batch.position_ids[:, -1:] + 1

        # Update past key values
        batch.past_key_values = past
        batch.image_hidden_states = image_hidden_states

        return generations, batch