main.rs 31.7 KB
Newer Older
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1
use clap::Parser;
2
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
3
use std::env;
4
use std::ffi::OsString;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
5
6
7
8
9
10
11
12
13
14
use std::io::{BufRead, BufReader, Read};
use std::path::Path;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
use std::sync::Arc;
use std::sync::{mpsc, Mutex};
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
15
use subprocess::{ExitStatus, Popen, PopenConfig, PopenError, Redirection};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16
17
18
19
20

/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
21
22
23
24
25
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
26
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
27
    model_id: String,
28
29
30

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
31
    #[clap(long, env)]
32
    revision: Option<String>,
33
34
35
36

    /// Wether to shard or not the model across multiple GPUs
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
37
38
    #[clap(long, env)]
    sharded: Option<bool>,
39
40
41
42
43

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
    /// You can use `CUDA_VISIBLE_DEVICE=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICE=2,3 text-generation-launcher... --num_shard 2` to
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
44
45
    #[clap(long, env)]
    num_shard: Option<usize>,
46
47
48

    /// Wether you want the model to be quantized or not. This will use bitsandbytes for
    /// quantization on the fly.
49
50
    #[clap(long, env)]
    quantize: bool,
51
52
53
54

    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
55
56
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
57
58
59
60

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
61
62
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
63
64
65
66
67
68

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
69
70
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
71
72
73
74
75

    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
76
77
    #[clap(default_value = "1000", long, env)]
    max_input_length: usize,
78
79
80
81
82
83
84
85
86

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
87
88
    #[clap(default_value = "1512", long, env)]
    max_total_tokens: usize,
89
90
91
92

    /// The maximum allowed batch size during dynamic batching.
    /// Using `max_batch_total_tokens` should be favored in general
    /// as it's a finer way to control RAM usage.
93
94
    #[clap(long, env)]
    max_batch_size: Option<usize>,
95
96
97
98
99
100
101
102
103
104
105

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
106
107
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// So you don't have to control that finely
    /// `max_batch_size` or `max_total_tokens`. In fact you could mostly relax them if you
    /// want maximum flexibility. However, for your users if they are asking for the full amount of
    /// total tokens, they are likely to wait for a very long time to get a spot
    /// in the batch (since they are going to be alone) so setting `max_batch_size`
    /// and `max_total_tokens` can still be useful to prevent those long waiting times.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
133
134
    #[clap(default_value = "32000", long, env)]
    max_batch_total_tokens: u32,
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
153
154
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
155
    #[clap(default_value = "3000", long, short, env)]
156
157

    /// The port to listen on.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
158
    port: u16,
159
160
161

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
162
163
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
164
165

    /// The address the master shard will listen on. (setting used by torch distributed)
166
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
167
    master_addr: String,
168
169

    /// The address the master port will listen on. (setting used by torch distributed)
170
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
171
    master_port: usize,
172
173
174

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
175
    #[clap(long, env)]
176
    huggingface_hub_cache: Option<String>,
177
178
179

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
180
181
    #[clap(long, env)]
    weights_cache_override: Option<String>,
182
183
184
185
186

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
187
    #[clap(long, env)]
188
    disable_custom_kernels: bool,
189
190

    /// Outputs the logs in JSON format (useful for telemetry)
191
    #[clap(long, env)]
192
    json_output: bool,
193

194
195
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
196

197
198
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
199
200
201
202
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
203
204
}

205
206
207
208
209
#[derive(Debug)]
enum ShardStatus {
    Ready,
    Failed((usize, String)),
}
210

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
    quantize: bool,
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
    shutdown: Arc<Mutex<bool>>,
    _shutdown_sender: mpsc::Sender<()>,
) {
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
    fs::remove_file(uds).unwrap_or_default();

    // Process args
    let mut shard_argv = vec![
        "text-generation-server".to_string(),
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

    // Activate tensor parallelism
    if world_size > 1 {
        shard_argv.push("--sharded".to_string());
252
253
    }

254
255
256
    if quantize {
        shard_argv.push("--quantize".to_string())
    }
257

258
259
260
261
262
    // Model optional revision
    if let Some(revision) = revision {
        shard_argv.push("--revision".to_string());
        shard_argv.push(revision)
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
263

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
        shard_argv.push("--otlp-endpoint".to_string());
        shard_argv.push(otlp_endpoint);
    }

    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

    // Torch Distributed Env vars
    env.push(("RANK".into(), rank.to_string().into()));
    env.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    env.push(("MASTER_ADDR".into(), master_addr.into()));
    env.push(("MASTER_PORT".into(), master_port.to_string().into()));
    env.push(("NCCL_ASYNC_ERROR_HANDLING".into(), "1".into()));

    // Safetensors load fast
    env.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));

    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };

    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
        env.push((
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
        env.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
        env.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
        env.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
    }

    // Start process
    tracing::info!("Starting shard {rank}");
    let mut p = match Popen::create(
        &shard_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            // NCCL env vars
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
345
346
                }
            }
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
            status_sender
                .send(ShardStatus::Failed((rank, err.to_string())))
                .unwrap();
            return;
        }
    };

    // Redirect STDOUT to the console
    let shard_stdout = p.stdout.take().unwrap();

    thread::spawn(move || {
        // Enter shard-manager tracing span
        let stdout = BufReader::new(shard_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
            }
        }
    });

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
        if p.poll().is_some() {
            let mut err = String::new();
            p.stderr.take().unwrap().read_to_string(&mut err).unwrap();
            status_sender
                .send(ShardStatus::Failed((rank, err)))
                .unwrap();
            return;
        }

        // We received a shutdown signal
        if *shutdown.lock().unwrap() {
            p.terminate().unwrap();
            let _ = p.wait_timeout(Duration::from_secs(90));
            tracing::info!("Shard {rank} terminated");
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
            tracing::info!("Shard {rank} ready in {:?}", start_time.elapsed());
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
            tracing::info!("Waiting for shard {rank} to be ready...");
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

fn shutdown_shards(shutdown: Arc<Mutex<bool>>, shutdown_receiver: &mpsc::Receiver<()>) {
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
    {
        let mut shutdown = shutdown.lock().unwrap();
        *shutdown = true;
    }

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
    if let Ok(cuda_visible_devices) = env::var("CUDA_VISIBLE_DEVICES") {
        let n_devices = cuda_visible_devices.split(',').count();
        return Some(n_devices);
    }
    None
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

fn find_num_shards(sharded: Option<bool>, num_shard: Option<usize>) -> usize {
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES");
            let n_devices =
                num_cuda_devices().expect("--num-shard and CUDA_VISIBLE_DEVICES are not set");
            if n_devices <= 1 {
                panic!("`sharded` is true but only found {n_devices} CUDA devices");
478
            }
479
            n_devices
480
        }
481
482
483
484
485
486
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
                panic!("`sharded` is true but `num_shard` <= 1");
            }
            num_shard
487
        }
488
489
490
491
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
492
    };
493
494
495
    if num_shard < 1 {
        panic!("`num_shard` cannot be < 1");
    }
496
497
    num_shard
}
498

499
500
501
502
503
504
505
506
507
#[derive(Debug)]
enum LauncherError {
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
508

509
510
511
512
513
514
515
516
517
518
519
fn download_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
    let mut download_argv = vec![
        "text-generation-server".to_string(),
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
520

521
522
523
524
525
    // Model optional revision
    if let Some(revision) = &args.revision {
        download_argv.push("--revision".to_string());
        download_argv.push(revision.to_string())
    }
526

527
528
    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();
529

530
531
532
533
534
    // If huggingface_hub_cache is set, pass it to the shard
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };
535

536
537
538
539
540
541
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
542

543
544
545
546
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };
547

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    // Start process
    tracing::info!("Starting download process.");
    let mut download_process = match Popen::create(
        &download_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
567
568
                }
            }
569
570
571
            return Err(LauncherError::DownloadError);
        }
    };
572

573
574
575
576
577
578
579
580
581
582
    // Redirect STDOUT to the console
    let download_stdout = download_process.stdout.take().unwrap();
    thread::spawn(move || {
        // Enter download tracing span
        let stdout = BufReader::new(download_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "download").entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
583
            }
584
585
        }
    });
586

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    loop {
        if let Some(status) = download_process.poll() {
            match status {
                ExitStatus::Exited(exit_code) => {
                    if exit_code == 0 {
                        tracing::info!("Successfully downloaded weights.");
                        break;
                    } else {
                        let mut err = String::new();
                        download_process
                            .stderr
                            .take()
                            .unwrap()
                            .read_to_string(&mut err)
                            .unwrap();
                        tracing::error!("Download encountered an error: {err}");
                        return Err(LauncherError::DownloadError);
604
605
                    }
                }
606
607
608
609
                _ => {
                    tracing::error!("Download process exited with an unknown status.");
                    return Err(LauncherError::DownloadError);
                }
610
611
            }
        }
612
613
614
615
616
617
618
619
620
621
        if !running.load(Ordering::SeqCst) {
            download_process.terminate().unwrap();
            tracing::info!("Waiting for download process to gracefully shutdown");
            download_process
                .wait_timeout(Duration::from_secs(90))
                .unwrap();
            tracing::info!("Download process terminated");
            return Ok(());
        }
        sleep(Duration::from_millis(100));
622
    }
623
624
    Ok(())
}
625

626
#[allow(clippy::too_many_arguments)]
627
628
629
630
631
632
633
634
635
636
fn spawn_shards(
    num_shard: usize,
    args: &Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
637
638
    // Start shard processes
    for rank in 0..num_shard {
639
640
641
642
643
644
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
645
646
647
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
648
        let otlp_endpoint = args.otlp_endpoint.clone();
649
650
651
652
653
        let quantize = args.quantize;
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
654
655
        thread::spawn(move || {
            shard_manager(
656
                model_id,
657
                revision,
658
                quantize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
659
660
661
662
663
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
664
665
                huggingface_hub_cache,
                weights_cache_override,
666
                disable_custom_kernels,
667
668
                watermark_gamma,
                watermark_delta,
669
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
691
692
            Ok(ShardStatus::Failed((rank, err))) => {
                tracing::error!("Shard {} failed to start:\n{}", rank, err);
693
                shutdown_shards(shutdown, shutdown_receiver);
694
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
695
696
697
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
698
                shutdown_shards(shutdown, shutdown_receiver);
699
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
700
701
702
            }
        }
    }
703
704
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
705

706
707
708
709
710
fn spawn_webserver(
    args: Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
) -> Result<Popen, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
711
712
713
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
714
715
716
    let mut argv = vec![
        "text-generation-router".to_string(),
        "--max-concurrent-requests".to_string(),
717
        args.max_concurrent_requests.to_string(),
718
        "--max-best-of".to_string(),
719
        args.max_best_of.to_string(),
720
        "--max-stop-sequences".to_string(),
721
        args.max_stop_sequences.to_string(),
722
        "--max-input-length".to_string(),
723
        args.max_input_length.to_string(),
724
        "--max-total-tokens".to_string(),
725
        args.max_total_tokens.to_string(),
726
        "--waiting-served-ratio".to_string(),
727
        args.waiting_served_ratio.to_string(),
728
        "--max-waiting-tokens".to_string(),
729
        args.max_waiting_tokens.to_string(),
730
        "--port".to_string(),
731
        args.port.to_string(),
732
        "--master-shard-uds-path".to_string(),
733
        format!("{}-0", args.shard_uds_path),
734
        "--tokenizer-name".to_string(),
735
        args.model_id,
736
737
    ];

738
    // Deprecate max_batch_size
739
    if let Some(max_batch_size) = args.max_batch_size {
740
        argv.push("--max-batch-size".to_string());
741
742
743
744
        argv.push(max_batch_size.to_string())
    } else {
        argv.push("--max-batch-total-tokens".to_string());
        argv.push(args.max_batch_total_tokens.to_string())
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
745
746
    }

747
748
749
750
    // Model optional revision
    if let Some(ref revision) = args.revision {
        argv.push("--revision".to_string());
        argv.push(revision.to_string())
751
752
    }

753
754
    if args.json_output {
        argv.push("--json-output".to_string());
755
756
    }

757
    // OpenTelemetry
758
759
760
761
762
763
764
765
766
    if let Some(otlp_endpoint) = args.otlp_endpoint {
        argv.push("--otlp-endpoint".to_string());
        argv.push(otlp_endpoint);
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
        argv.push("--cors-allow-origin".to_string());
        argv.push(origin);
767
768
    }

769
770
771
    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

772
773
774
775
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };
776

777
778
    let mut webserver = match Popen::create(
        &argv,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
779
780
781
782
783
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
Nicolas Patry's avatar
Nicolas Patry committed
784
            env: Some(env),
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
785
786
787
788
789
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
790
791
            tracing::error!("Failed to start webserver: {}", err);
            if let PopenError::IoError(err) = err {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
792
                if err.kind() == io::ErrorKind::NotFound {
793
794
                    tracing::error!("text-generation-router not found in PATH");
                    tracing::error!("Please install it with `make install-router`")
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
795
                }
796
797
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
798
            }
799

800
            shutdown_shards(shutdown, shutdown_receiver);
801
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
802
803
804
        }
    };

805
806
807
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
808
809

    thread::spawn(move || {
810
811
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
812
        for line in stdout.lines() {
813
            println!("{}", line.unwrap());
814
        }
815
816
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
817
        }
818
819
820
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
821

822
823
824
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
    let args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
825

826
827
828
829
    if args.json_output {
        tracing_subscriber::fmt().json().init();
    } else {
        tracing_subscriber::fmt().compact().init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
830
831
    }

832
833
834
835
836
    tracing::info!("{:?}", args);

    let num_shard = find_num_shards(args.sharded, args.num_shard);
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
837
838
    }

839
840
841
842
843
844
845
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
846

847
848
849
850
851
852
853
    // Check if model_id is a local model
    let local_path = Path::new(&args.model_id);
    let is_local_model = local_path.exists() && local_path.is_dir();

    // Download weights for sharded models
    if !is_local_model && args.weights_cache_override.is_none() && num_shard > 1 {
        download_model(&args, running.clone())?;
854
    }
855

856
857
858
859
860
    // Shared shutdown bool
    let shutdown = Arc::new(Mutex::new(false));
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
861

862
863
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
864

865
866
867
868
869
870
871
872
873
874
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
875

876
877
878
879
880
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
881

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
    let mut webserver = spawn_webserver(args, shutdown.clone(), &shutdown_receiver)?;

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
        if let Ok(ShardStatus::Failed((rank, err))) = status_receiver.try_recv() {
            tracing::error!("Shard {rank} failed:\n{err}");
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

        match webserver.poll() {
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
904
    }
905
906
907
908
909
910
911
912
913

    // Graceful termination
    webserver.terminate().unwrap();
    tracing::info!("Waiting for webserver to gracefully shutdown");
    webserver.wait_timeout(Duration::from_secs(90)).unwrap();
    tracing::info!("Webserver terminated");
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
914
}