flash_phi.py 3.51 KB
Newer Older
drbh's avatar
drbh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.distributed

from opentelemetry import trace
from transformers import AutoConfig, AutoTokenizer
from typing import Optional

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_phi_modeling import (
    FlashPhiForCausalLM,
    PhiConfig,
)
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)

tracer = trace.get_tracer(__name__)


class FlashPhi(FlashCausalLM):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
        use_medusa: Optional[str] = None,
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.float16 if dtype is None else dtype
        else:
            raise NotImplementedError("FlashPhi is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )

        config = PhiConfig.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        if config.quantize in ["gptq", "awq"]:
            weights._set_gptq_params(model_id, revision)

        model = FlashPhiForCausalLM(config, weights)
        if use_medusa:
            from text_generation_server.utils.medusa import MedusaModel
            from huggingface_hub import hf_hub_download
            import json
            import os
            from pathlib import Path
OlivierDehaene's avatar
OlivierDehaene committed
66
67
68
69
70

            is_local_model = (
                Path(use_medusa).exists() and Path(use_medusa).is_dir()
            ) or os.getenv("WEIGHTS_CACHE_OVERRIDE", None) is not None

drbh's avatar
drbh committed
71
72
73
74
75
76
77
78
79
80
            if not is_local_model:
                medusa_config = hf_hub_download(
                    use_medusa, revision=revision, filename="config.json"
                )
                medusa_head = hf_hub_download(
                    use_medusa, revision=revision, filename="medusa_lm_head.pt"
                )
            else:
                medusa_config = str(Path(use_medusa) / "config.json")
                medusa_head = str(Path(use_medusa) / "medusa_lm_head.pt")
OlivierDehaene's avatar
OlivierDehaene committed
81

drbh's avatar
drbh committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            with open(medusa_config, "r") as f:
                config = json.load(f)
            medusa_sf = medusa_head[: -len(".pt")] + ".safetensors"
            weights = Weights(
                [medusa_sf], device, dtype, process_group=self.process_group
            )
            lm_head = model.lm_head
            model.lm_head = MedusaModel(config, weights, lm_head)

        torch.distributed.barrier(group=self.process_group)
        super(FlashPhi, self).__init__(
            model=model,
            tokenizer=tokenizer,
            num_layers=len(model.model.layers),
            num_kv_heads=model.model.num_key_value_heads,
            head_size=model.model.head_size,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
        )