"vscode:/vscode.git/clone" did not exist on "fa58402636abb808ed9358d33f4b589fbfa8ebca"
flash_llama.py 3.89 KB
Newer Older
1
2
3
4
import torch
import torch.distributed

from opentelemetry import trace
5
6
from transformers import AutoConfig, AutoTokenizer
from transformers.models.llama import LlamaTokenizer
7
from typing import Optional
8
9
10
11

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
    FlashLlamaForCausalLM,
12
    LlamaConfig,
13
14
15
16
)
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
17
    Weights,
18
19
20
21
22
23
24
)

tracer = trace.get_tracer(__name__)


class FlashLlama(FlashCausalLM):
    def __init__(
25
26
27
28
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
29
        dtype: Optional[torch.dtype] = None,
30
        trust_remote_code: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
31
        use_medusa: Optional[str] = None,
32
    ):
33
        self.process_group, rank, world_size = initialize_torch_distributed()
34
        if torch.cuda.is_available():
35
            device = torch.device(f"cuda:{rank}")
36
            dtype = torch.float16 if dtype is None else dtype
37
38
39
        else:
            raise NotImplementedError("FlashLlama is only available on GPU")

40
41
42
43
44
45
46
47
48
        try:
            tokenizer = LlamaTokenizer.from_pretrained(
                model_id,
                revision=revision,
                padding_side="left",
                truncation_side="left",
                trust_remote_code=trust_remote_code,
            )
        except Exception:
49
            tokenizer = AutoTokenizer.from_pretrained(
50
51
52
53
54
55
                model_id,
                revision=revision,
                padding_side="left",
                truncation_side="left",
                trust_remote_code=trust_remote_code,
            )
56

57
        config = LlamaConfig.from_pretrained(
58
            model_id, revision=revision, trust_remote_code=trust_remote_code
59
        )
60
        config.quantize = quantize
61
62

        torch.distributed.barrier(group=self.process_group)
63

64
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
65
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
66
        if config.quantize in ["gptq", "awq"]:
OlivierDehaene's avatar
OlivierDehaene committed
67
            weights._set_gptq_params(model_id, revision)
68

69
        model = FlashLlamaForCausalLM(config, weights)
Nicolas Patry's avatar
Nicolas Patry committed
70
71
72
73
        if use_medusa:
            from text_generation_server.utils.medusa import MedusaModel
            from huggingface_hub import hf_hub_download
            import json
PYNing's avatar
PYNing committed
74
75
            import os
            from pathlib import Path
OlivierDehaene's avatar
OlivierDehaene committed
76
77
78
79
80

            is_local_model = (
                Path(use_medusa).exists() and Path(use_medusa).is_dir()
            ) or os.getenv("WEIGHTS_CACHE_OVERRIDE", None) is not None

PYNing's avatar
PYNing committed
81
82
83
84
85
86
87
88
89
90
            if not is_local_model:
                medusa_config = hf_hub_download(
                    use_medusa, revision=revision, filename="config.json"
                )
                medusa_head = hf_hub_download(
                    use_medusa, revision=revision, filename="medusa_lm_head.pt"
                )
            else:
                medusa_config = str(Path(use_medusa) / "config.json")
                medusa_head = str(Path(use_medusa) / "medusa_lm_head.pt")
OlivierDehaene's avatar
OlivierDehaene committed
91

Nicolas Patry's avatar
Nicolas Patry committed
92
93
            with open(medusa_config, "r") as f:
                config = json.load(f)
OlivierDehaene's avatar
OlivierDehaene committed
94
95
96
97
            medusa_sf = medusa_head[: -len(".pt")] + ".safetensors"
            weights = Weights(
                [medusa_sf], device, dtype, process_group=self.process_group
            )
Nicolas Patry's avatar
Nicolas Patry committed
98
99
            lm_head = model.lm_head
            model.lm_head = MedusaModel(config, weights, lm_head)
100
101

        torch.distributed.barrier(group=self.process_group)
102
        super(FlashLlama, self).__init__(
103
            model=model,
104
            tokenizer=tokenizer,
105
            num_layers=len(model.model.layers),
106
            num_kv_heads=model.model.num_key_value_heads,
107
            head_size=model.model.head_size,
108
            dtype=dtype,
109
            device=device,
110
111
            rank=rank,
            world_size=world_size,
112
        )