mamba.py 27.1 KB
Newer Older
drbh's avatar
drbh committed
1
2
3
4
import torch
import torch.distributed
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from typing import Optional
5
import os
drbh's avatar
drbh committed
6
7
8
from text_generation_server.models.custom_modeling.mamba_modeling import (
    MambaConfig,
)
9
from loguru import logger
drbh's avatar
drbh committed
10
11
12
13
14
15
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)
16
from text_generation_server.models.globals import CUDA_GRAPHS, MEM_POOL
drbh's avatar
drbh committed
17
import time
OlivierDehaene's avatar
OlivierDehaene committed
18
19
20
21
from text_generation_server.models.custom_modeling.mamba_modeling import (
    MambaModel,
    InferenceParams,
)
drbh's avatar
drbh committed
22
23
24
25
26
27
28
29
30
31
32
from text_generation_server.models import Model
from typing import Any, List, Optional, Tuple, Type, Dict
from text_generation_server.models.types import (
    Batch,
    Tokens,
    Generation,
    GeneratedText,
)
from text_generation_server.utils.tokens import batch_top_tokens, Sampling
from dataclasses import dataclass
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
33

OlivierDehaene's avatar
OlivierDehaene committed
34
35
36
37
38
39
40
41
42
43
44

def new_inference_params(
    n_blocks: int,
    batch_size: int,
    d_inner: int,
    d_conv: int,
    d_state: int,
    seqlen_offset: int,
    dtype: torch.dtype,
    device: torch.device,
):
45
46
    max_seqlen = 0
    conv_states = torch.zeros(
OlivierDehaene's avatar
OlivierDehaene committed
47
48
49
50
51
52
        (
            n_blocks,
            batch_size,
            d_inner,
            d_conv,
        ),
53
54
55
56
        device=device,
        dtype=dtype,
    )
    ssm_states = torch.zeros(
OlivierDehaene's avatar
OlivierDehaene committed
57
58
59
60
61
62
        (
            n_blocks,
            batch_size,
            d_inner,
            d_state,
        ),
63
64
65
66
67
68
69
70
71
72
73
        device=device,
        dtype=dtype,
    )
    inference_params = InferenceParams(
        max_seqlen=max_seqlen,
        max_batch_size=batch_size,
        seqlen_offset=seqlen_offset,
        conv_states=conv_states,
        ssm_states=ssm_states,
    )
    return inference_params
drbh's avatar
drbh committed
74

75

drbh's avatar
drbh committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
@dataclass
class MambaBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
    requests_idx_mapping: Dict[int, int]

    # Decoder values
    input_ids: torch.Tensor

    # All tokens
    all_input_ids: List[torch.Tensor]

    # Lengths of all generations present in the batch
    input_lengths: List[int]
    prefix_offsets: List[int]
    read_offsets: List[int]

    # Generation helpers
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]
    top_n_tokens: List[int]
    top_n_tokens_tensor: torch.Tensor

    # Metadata used for padding
    max_input_length: int
    padding_right_offset: int

    # Maximum number of tokens this batch will grow to
    max_tokens: int

    # Past metadata
    keys_head_dim_last: bool = True

    # Inference params
    inference_params: Optional[Dict[str, Any]] = None

    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
            id=self.batch_id,
            request_ids=[r.id for r in self.requests],
            size=len(self),
            max_tokens=self.max_tokens,
        )
119

drbh's avatar
drbh committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "MambaBatch":
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        prefix_offsets = []
        read_offsets = []
        requests_idx_mapping = {}

        # Parse batch
        max_truncation = 0
        padding_right_offset = 0
        max_decode_tokens = 0
        for i, r in enumerate(pb.requests):
            requests_idx_mapping[r.id] = i
            inputs.append(r.inputs)
OlivierDehaene's avatar
OlivierDehaene committed
143
144
145
            next_token_choosers.append(
                NextTokenChooser.from_pb(r.parameters, device, tokenizer)
            )
drbh's avatar
drbh committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(r.top_n_tokens)
            max_truncation = max(max_truncation, r.truncate)
            max_decode_tokens += stopping_criteria.max_new_tokens
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
            )

        tokenized_inputs = tokenizer(
            inputs,
            return_tensors="pt",
            padding=True,
            return_token_type_ids=False,
            truncation=True,
            max_length=max_truncation,
        ).to(device)
        for _ in pb.requests:
            input_len = tokenized_inputs["input_ids"].shape[1]
            prefix_offsets.append(input_len - 5)
            read_offsets.append(input_len)

        input_lengths = tokenized_inputs["attention_mask"].sum(1)
        max_input_length = input_lengths.max()
        input_ids = tokenized_inputs["input_ids"]
        all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )
        max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            # past_input_ids=None,
            all_input_ids=list(all_input_ids),
            input_lengths=input_lengths.tolist(),
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length.item(),
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )

    def filter(self, request_ids: List[int]) -> Optional["MambaBatch"]:
        if len(request_ids) == 0:
            raise ValueError("Batch must have at least one request")
        if len(request_ids) == len(self):
            return self

        keep_indices = []

        # New values after filtering
        requests_idx_mapping = {}
        requests = []
        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        max_input_length = 0

        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []

        total_remaining_decode_tokens = 0
        new_padding_right_offset = 0

        indices = []
        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
            requests_idx_mapping[request_id] = i
            keep_indices.append(idx)

            requests.append(self.requests[idx])
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
            all_input_ids.append(self.all_input_ids[idx])

            request_input_length = self.input_lengths[idx]
            input_lengths.append(request_input_length)
            max_input_length = max(max_input_length, request_input_length)
            indices.append(idx)

            next_token_choosers.append(self.next_token_choosers[idx])
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(self.top_n_tokens[idx])
            remaining_decode_tokens = (
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
            total_remaining_decode_tokens += remaining_decode_tokens
            new_padding_right_offset = max(
                new_padding_right_offset, remaining_decode_tokens
            )
248

drbh's avatar
drbh committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        # Apply indices to input_ids, attention mask, past key values and other items that need to be cached
        input_ids = self.input_ids[keep_indices]

        top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
        max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens

        self.requests = requests
        self.requests_idx_mapping = requests_idx_mapping
        self.input_ids = input_ids
        self.all_input_ids = all_input_ids
        self.input_lengths = input_lengths
        self.prefix_offsets = prefix_offsets
        self.read_offsets = read_offsets
        self.next_token_choosers = next_token_choosers
        self.stopping_criterias = stopping_criterias
        self.top_n_tokens = top_n_tokens
        self.top_n_tokens_tensor = top_n_tokens_tensor
        self.max_input_length = max_input_length
        self.padding_right_offset = new_padding_right_offset
        self.max_tokens = max_tokens

270
        # TODO
drbh's avatar
drbh committed
271
        # Kept it simple by just updating the state, maybe updating the other CPU values is necessary.
OlivierDehaene's avatar
OlivierDehaene committed
272
273
274
        self.inference_params.conv_states = self.inference_params.conv_states[
            :, indices
        ]
275
        self.inference_params.ssm_states = self.inference_params.ssm_states[:, indices]
drbh's avatar
drbh committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        return self

    @classmethod
    def concatenate(cls, batches: List["MambaBatch"]) -> "MambaBatch":
        # Used for padding
        total_batch_size = 0
        max_input_length = 0
        padding_right_offset = 0
        for batch in batches:
            total_batch_size += len(batch)
            max_input_length = max(max_input_length, batch.max_input_length)
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)

        # Batch attributes
        requests = []
        requests_idx_mapping = {}
        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        max_tokens = 0
        max_seqlen = 0
        seqlen_offset = 0

OlivierDehaene's avatar
OlivierDehaene committed
303
        (n_blocks, _, d_inner, d_conv) = batches[0].inference_params.conv_states.shape
304
305
306
        (_, _, _, d_state) = batches[0].inference_params.ssm_states.shape
        dtype = batches[0].inference_params.conv_states.dtype
        device = batches[0].inference_params.conv_states.device
OlivierDehaene's avatar
OlivierDehaene committed
307
308
309
310
311
312
313
314
315
316
        inference_params = new_inference_params(
            n_blocks=n_blocks,
            batch_size=total_batch_size,
            d_state=d_state,
            d_conv=d_conv,
            d_inner=d_inner,
            seqlen_offset=seqlen_offset,
            device=device,
            dtype=dtype,
        )
317

drbh's avatar
drbh committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        # Batch tensors
        input_ids = None
        top_n_tokens_tensor = None

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
            all_input_ids.extend(batch.all_input_ids)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)
            top_n_tokens.extend(batch.top_n_tokens)

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + start_index

            # Slicing end index for this batch
            end_index = start_index + len(batch)

            # Create empty tensor
            # input_ids is always of shape [batch_size, 1]
            # We do not need to pad it
            if input_ids is None:
                input_ids = batch.input_ids.new_empty((total_batch_size, 1))
            # Copy to correct indices
            input_ids[start_index:end_index] = batch.input_ids

            if top_n_tokens_tensor is None:
                top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
                    total_batch_size,
                )
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor

            # Add eventual padding tokens that were added while concatenating
            max_tokens += batch.max_tokens + (
                max_input_length - batch.max_input_length
            ) * len(batch)

OlivierDehaene's avatar
OlivierDehaene committed
364
365
366
            inference_params.max_seqlen = max(
                inference_params.max_seqlen, batch.inference_params.max_seqlen
            )
367
            assert batch.inference_params.seqlen_offset != 0, "Invalid seqlen offset"
OlivierDehaene's avatar
OlivierDehaene committed
368
369
370
            inference_params.seqlen_offset = max(
                inference_params.seqlen_offset, batch.inference_params.seqlen_offset
            )
drbh's avatar
drbh committed
371

OlivierDehaene's avatar
OlivierDehaene committed
372
373
374
375
376
377
            inference_params.conv_states[:, start_index:end_index] = (
                batch.inference_params.conv_states
            )
            inference_params.ssm_states[:, start_index:end_index] = (
                batch.inference_params.ssm_states
            )
drbh's avatar
drbh committed
378

379
            start_index = end_index
drbh's avatar
drbh committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            all_input_ids=all_input_ids,
            input_lengths=input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length,
            padding_right_offset=padding_right_offset,
            keys_head_dim_last=batches[0].keys_head_dim_last,
            max_tokens=max_tokens,
398
            inference_params=inference_params,
drbh's avatar
drbh committed
399
400
401
402
403
        )

    def __len__(self):
        return len(self.requests)

404

drbh's avatar
drbh committed
405
406
407
408
409
410
class Mamba(Model):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
411
        use_medusa: Optional[str] = None,
drbh's avatar
drbh committed
412
413
414
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
Nicolas Patry's avatar
Nicolas Patry committed
415
416
417
        self.process_group, _rank, world_size = initialize_torch_distributed()
        if world_size > 1:
            raise RuntimeError("Mamba does not support Tensor Parallelism (TP)")
418
        self.cuda_graphs = {}
drbh's avatar
drbh committed
419
420
        if torch.cuda.is_available():
            device = torch.device("cuda")
421
422
423
424
            # Bf16 is important. In f16 accumulations in the matmul are causing
            # differences while the server is under load.
            # This is detectable by the integration load test
            dtype = torch.bfloat16 if dtype is None else dtype
drbh's avatar
drbh committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        else:
            if quantize:
                raise ValueError("quantization is not available on CPU")

            device = torch.device("cpu")
            dtype = torch.float32 if dtype is None else dtype

        tokenizer = AutoTokenizer.from_pretrained(
            "EleutherAI/gpt-neox-20b",
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        config = MambaConfig.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )

        tokenizer.bos_token_id = config.bos_token_id
        tokenizer.eos_token_id = config.eos_token_id
        tokenizer.pad_token = tokenizer.eos_token

        config.quantize = quantize
448
        config.use_medusa = use_medusa
drbh's avatar
drbh committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        torch.distributed.barrier(group=self.process_group)
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        model = MambaModel(config, weights)
        torch.distributed.barrier(group=self.process_group)
        super(Mamba, self).__init__(
            model=model,
            tokenizer=tokenizer,
            requires_padding=True,
            dtype=dtype,
            device=device,
        )

    @property
    def batch_type(self) -> Type[MambaBatch]:
        return MambaBatch

    def warmup(self, batch) -> Optional[int]:
        # TODO: implement warmup for Mamba if needed
468
        if CUDA_GRAPHS:
469
470
            if self.speculate is None or self.speculate == 0:
                try:
471
                    logger.info(f"Cuda Graphs are enabled for sizes {CUDA_GRAPHS}")
472
                    # Warmup cuda graphs
473
                    for bs in CUDA_GRAPHS:
474
475
476
477
                        self.cuda_graph_warmup(bs)
                except Exception:
                    logger.exception(f"Decode cuda graph warmup failed")

drbh's avatar
drbh committed
478
        return None
479

480
481
482
483
484
485
486
487
488
489
490
    def cuda_graph_warmup(self, batch_size: int):
        input_ids = torch.zeros((batch_size, 1), dtype=torch.int64, device=self.device)
        n_blocks = len(self.model.blocks)

        d_state = self.model.config.d_state
        d_conv = self.model.config.d_conv
        # Inner takes the expand multiplication
        d_inner = self.model.config.d_inner

        # Important seqlen_offset to go through the update mecanism with the state
        seqlen_offset = 1
OlivierDehaene's avatar
OlivierDehaene committed
491
492
493
494
495
496
497
498
499
500
        inference_params = new_inference_params(
            n_blocks=n_blocks,
            batch_size=batch_size,
            d_state=d_state,
            d_conv=d_conv,
            d_inner=d_inner,
            seqlen_offset=seqlen_offset,
            device=self.device,
            dtype=self.dtype,
        )
501
502
503
504
505

        graph = torch.cuda.CUDAGraph()

        torch.cuda.synchronize()
        # Run once outside to warmup
OlivierDehaene's avatar
OlivierDehaene committed
506
        self.model.forward(input_ids=input_ids, inference_params=inference_params)
507
508
509
        torch.cuda.synchronize()

        with torch.cuda.graph(graph, pool=MEM_POOL):
510
            logits, speculative_logits = self.model.forward(
OlivierDehaene's avatar
OlivierDehaene committed
511
                input_ids=input_ids, inference_params=inference_params
512
513
514
515
516
517
            )
        torch.cuda.synchronize()
        graph_dict = {
            "input_ids": input_ids,
            "inference_params": inference_params,
            "graph": graph,
OlivierDehaene's avatar
OlivierDehaene committed
518
            "logits": logits,
519
            "speculative_logits": speculative_logits,
520
521
522
        }
        self.cuda_graphs[batch_size] = graph_dict

drbh's avatar
drbh committed
523
    def forward(
OlivierDehaene's avatar
OlivierDehaene committed
524
        self, input_ids: torch.Tensor, inference_params: Any
drbh's avatar
drbh committed
525
    ) -> Tuple[torch.Tensor, torch.Tensor]:
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        bs = input_ids.shape[0]
        padded_bs = bs
        if bs == 3:
            padded_bs = 4
        elif 3 < bs <= 8:
            padded_bs = 8
        elif bs > 8:
            padded_bs = (bs + 7) // 8 * 8

        # Try to find an associated cuda graph
        cuda_graph = self.cuda_graphs.get(padded_bs, None)
        is_prefill = inference_params is None or inference_params.seqlen_offset == 0

        if is_prefill or cuda_graph is None:
            return self.model(
                input_ids,
                inference_params=inference_params,
            )

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
OlivierDehaene's avatar
OlivierDehaene committed
547
548
549
550
551
        cuda_graph["input_ids"][:bs] = input_ids
        cuda_graph["inference_params"].conv_states[
            :, :bs
        ] = inference_params.conv_states
        cuda_graph["inference_params"].ssm_states[:, :bs] = inference_params.ssm_states
552
553
554
555

        # Replay the graph
        cuda_graph["graph"].replay()

OlivierDehaene's avatar
OlivierDehaene committed
556
557
558
559
560
561
        inference_params.conv_states.copy_(
            cuda_graph["inference_params"].conv_states[:, :bs]
        )
        inference_params.ssm_states.copy_(
            cuda_graph["inference_params"].ssm_states[:, :bs]
        )
562
        # Slice output to the correct shape
563
564
565
566
567
568
569
        speculative_logits = (
            cuda_graph["speculative_logits"][:bs]
            if cuda_graph["speculative_logits"] is not None
            else None
        )
        logits = cuda_graph["logits"][:bs]
        return logits, speculative_logits
drbh's avatar
drbh committed
570
571
572

    def generate_token(self, batch) -> Tuple[List[Any], Optional[Any], Tuple[int, int]]:
        start = time.time_ns()
573
574
575
        input_ids = (
            batch.input_ids
        )  # batch.past_input_ids if batch.past_input_ids is not None else batch.input_ids
drbh's avatar
drbh committed
576

577
        batch_size, max_seqlen = input_ids.shape
drbh's avatar
drbh committed
578
        # Inference params
579

drbh's avatar
drbh committed
580
        if batch.inference_params is None:
581
            # 0 is important here
OlivierDehaene's avatar
OlivierDehaene committed
582
            seqlen_offset = 0
583
584
585
586
            n_blocks = len(self.model.blocks)
            d_state = self.model.config.d_state
            d_conv = self.model.config.d_conv
            d_inner = self.model.config.d_inner
OlivierDehaene's avatar
OlivierDehaene committed
587
588
589
590
591
592
593
594
595
596
            inference_params = new_inference_params(
                n_blocks=n_blocks,
                batch_size=batch_size,
                d_state=d_state,
                d_conv=d_conv,
                d_inner=d_inner,
                seqlen_offset=seqlen_offset,
                device=self.device,
                dtype=self.dtype,
            )
drbh's avatar
drbh committed
597
            batch.inference_params = inference_params
598

drbh's avatar
drbh committed
599
        # Forward pass
600
601
602
        logits, speculative_logits = self.forward(
            input_ids, inference_params=batch.inference_params
        )
603
604

        # batch.inference_params = new_inference_params
drbh's avatar
drbh committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
        # Results
        generations: List[Generation] = []
        stopped = True

        # Speculation is not active for causal
        accepted_ids = torch.ones_like(batch.input_ids)[:, 0]
        batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
            batch.top_n_tokens,
            batch.top_n_tokens_tensor,
            torch.log_softmax(logits[:, -1], -1),
            accepted_ids,
        )

        start_decode = time.time_ns()

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.prefix_offsets,
            batch.read_offsets,
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
            batch.top_n_tokens,
            batch_top_token_ids,
            batch_top_token_logprobs,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            prefix_offset,
            read_offset,
            logits,
            next_token_chooser,
            stopping_criteria,
            all_input_ids,
            top_n_tokens,
            top_token_ids,
            top_token_logprobs,
        ) in enumerate(iterator):
            # Select next token
            next_token_id, logprobs = next_token_chooser(
                all_input_ids.view(1, -1), logits[-1:, :]
            )

            # Append next token to all tokens
            all_input_ids = torch.cat([all_input_ids, next_token_id])
            new_input_length = input_length + 1

            # Generated token
            next_token_logprob = logprobs[-1, next_token_id]
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_text, prefix_offset, read_offset = self.decode_token(
                all_input_ids[:, 0], prefix_offset, read_offset
            )

            # Evaluate stopping criteria
            stop, reason = stopping_criteria(
                next_token_id_squeezed,
                next_token_text,
            )

            if not stop:
                stopped = False

            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
                    output_text, _, _ = self.decode_token(
                        all_input_ids[:, 0],
                        prefix_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens
                        - 1,
684
685
                        read_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens,
drbh's avatar
drbh committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
                        skip_special_tokens=True,
                    )
                    # Get seed
                    if isinstance(next_token_chooser.choice, Sampling):
                        seed = next_token_chooser.choice.seed
                    else:
                        seed = None

                    generated_text = GeneratedText(
                        output_text, stopping_criteria.current_tokens, reason, seed
                    )
                else:
                    generated_text = None

                if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
                    # Remove generated token to only have prefill and add nan for first prompt token
                    prefill_logprobs = [float("nan")] + torch.log_softmax(
                        logits, -1
                    ).gather(1, all_input_ids[1:]).squeeze(1)[
                        -new_input_length:-1
                    ].tolist()
                    prefill_token_ids = all_input_ids[-new_input_length:-1]
                    prefill_texts = self.tokenizer.batch_decode(
                        prefill_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
                    prefill_tokens = Tokens(
                        prefill_token_ids,
                        prefill_logprobs,
                        prefill_texts,
                        is_special=[],
                    )
                else:
                    prefill_tokens = None

                if top_n_tokens > 0:
                    toptoken_texts = self.tokenizer.batch_decode(
                        top_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
                    special_toptokens = [
                        token_id in self.all_special_ids for token_id in top_token_ids
                    ]
                    top_tokens = Tokens(
                        top_token_ids,
                        top_token_logprobs,
                        toptoken_texts,
                        special_toptokens,
                    )
                else:
                    top_tokens = None

                generation = Generation(
                    request.id,
                    prefill_tokens,
                    Tokens(
                        [next_token_id_squeezed],
                        [next_token_logprob],
                        [next_token_text],
                        [next_token_id_squeezed.item() in self.all_special_ids],
                    ),
                    generated_text,
                    top_tokens,
                )

                generations.append(generation)

                # Update values
OlivierDehaene's avatar
OlivierDehaene committed
756
757
758
                batch.next_token_choosers[i] = batch.next_token_choosers[
                    i
                ].advance_grammar(next_token_id_squeezed.item())
drbh's avatar
drbh committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
                batch.input_ids[i, 0] = next_token_id
                batch.all_input_ids[i] = all_input_ids
                batch.input_lengths[i] = new_input_length
                batch.prefix_offsets[i] = prefix_offset
                batch.read_offsets[i] = read_offset
                batch.max_input_length = max(batch.max_input_length, new_input_length)

        # We finished all generations in the batch; there is no next batch
        if stopped:
            forward_ns = start_decode - start
            decode_ns = time.time_ns() - start_decode
            return generations, None, (forward_ns, decode_ns)

        # Slice unused values from prefill
        batch.input_ids = batch.input_ids[:, :1]

        forward_ns = start_decode - start
        decode_ns = time.time_ns() - start_decode
        return generations, batch, (forward_ns, decode_ns)