mlp.py 6.07 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
import math
from torch import nn
from torch.nn import functional as F
from typing import Optional, Tuple
from text_generation_server.layers import TensorParallelEmbedding, FastLinear
from text_generation_server.layers.tensor_parallel import TensorParallelHead
from text_generation_server.utils.speculate import get_speculate


class MLPSpeculatorLayerNorm(nn.Module):
    """
    A L2 normalization implementation
    ...
    Args
    ----
    normalized_shape : int
        Dimensionality of input data (size of final tensor axis)
    elementwise_scale_weight : torch.Tensor
        learned scaling term after normalization?
    elementwise_shift_bias : torch.Tensor
        learned bias term after normalization?
    eps : float
        Safety term to prevent division by zero. Make sure the chosen value fits in the range of your encoding scheme (i.e. fp16 requires eps >= 6e-8).
    """

    def __init__(
        self,
        prefix,
        config,
        weights,
        eps=1e-06,
    ):
        super(MLPSpeculatorLayerNorm, self).__init__()
        self.weight = weights.get_tensor(f"{prefix}.weight")
        self.bias = weights.get_tensor(f"{prefix}.bias")
        self.eps = eps

    def forward(self, x):
        xf = x
        xf = xf * torch.rsqrt(xf.pow(2).mean(-1, keepdim=True) + self.eps)
        x = xf.type_as(x)
        x = self.weight * x
        x = x + self.bias
        return x


class MLPSpeculatorModel(torch.nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        self.config = config
        self.n_predict = get_speculate()
        self.hidden_size = config.hidden_size
        self.emb = nn.ModuleList(
            [
                TensorParallelEmbedding(f"{prefix}.emb.{i}", weights)
                for i in range(self.n_predict)
            ]
        )
        self.proj = [
            FastLinear.load(
                config,
                prefix=f"{prefix}.proj.{i}",
                weights=weights,
                bias=False,
            )
            for i in range(self.n_predict)
        ]
        self.head = nn.ModuleList(
            [
                FastLinear.load(config, f"{prefix}.head.{i}", weights, bias=False)
                for i in range(self.n_predict)
            ]
        )
        self.ln = nn.ModuleList(
            [
                MLPSpeculatorLayerNorm(
                    prefix=f"{prefix}.ln.{i}",
                    config=config,
                    weights=weights,
                )
                for i in range(self.n_predict)
            ]
        )

        # Weights ensure that state_0 accounts for 50% of state magnitude by final head in expectation
        self.state_weight = 0.5 ** (0.5 / self.n_predict)
        self.emb_weight = math.sqrt(1 - self.state_weight**2)
        self.activation = nn.GELU()
        # TODO
        self.vsize = config.vocab_size
        self.inner_dim = config.speculator_config["inner_dim"]
        self.top_k_tokens_per_head = [1] * self.n_predict

    def forward(
        self,
        hidden_states: torch.Tensor,
        input_ids: torch.Tensor,
    ):
        top_k_tokens_per_head = self.top_k_tokens_per_head

        # k indicates # of candidates
        # h indicates # of generated tokens
        state = hidden_states
        b = state.size(0)
        ind = input_ids.unsqueeze(0)
        all_probs = torch.empty(
            b, self.n_predict, self.vsize, device=state.device
        )  # b k h v
        assert (
            len(top_k_tokens_per_head) == self.n_predict
        ), f"You must provide a topk number for each head ({self.n_predict} heads, {len(top_k_tokens_per_head)} provided)"
        for i in range(self.n_predict):
            # Project and predict
            z = self.emb[i](ind)
            z = z.mul(self.emb_weight * math.sqrt(self.inner_dim / 2))  # b k d
            state = self.proj[i](state) * self.state_weight + z
            state = self.activation(self.ln[i](state))  # b k d
            probs = F.log_softmax(self.head[i](state), dim=-1)  # b k v
            _probs, preds = probs.topk(top_k_tokens_per_head[i], dim=-1)  # b k k'

            # Update candidate set with new predictions

            # Update distribution set with new logits
            all_probs[:, i] = probs.exp()

            # Update state, log_probs and ind for new predictions
            state = state.unsqueeze(2).expand(
                -1, -1, top_k_tokens_per_head[i], -1
            )  # b k k' d
            state = state.reshape(-1, b, state.size(3))  # b kk' d
            ind = preds.view(-1, b)  # b kk'

        speculative_logits = all_probs
        return speculative_logits


class MLPSpeculatorHead(nn.Module):
    def __init__(self, lm_head, mlp_speculator):
        super().__init__()
        self.lm_head = lm_head
        self.mlp_speculator = mlp_speculator

    def forward(
        self, input: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        logits = self.lm_head(input)
        # If we have too many tokens, we skip speculative logits
        if input.shape[0] > 128:
            return logits, None

        input_ids = logits.argmax(dim=-1)
        speculative_logits = self.mlp_speculator(input, input_ids)
        return logits, speculative_logits

    @staticmethod
    def load(config, prefix: str, weights):
        from pathlib import Path
        from safetensors import safe_open

        speculator_path = config.speculator["path"]

        for fname in config.speculator["model_paths"]:
            filename = str(Path(speculator_path) / fname)
            routing = weights.routing
            with safe_open(filename, framework="pytorch") as f:
                for k in f.keys():
                    if k in routing and routing[k] != filename:
                        raise RuntimeError(
                            f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                        )
                    routing[k] = filename

        mlp_speculator = MLPSpeculatorModel(config, "speculator", weights)
        lm_head = TensorParallelHead.load(config, prefix, weights)
        return MLPSpeculatorHead(lm_head, mlp_speculator)