conftest.py 15.5 KB
Newer Older
1
import sys
2
3
4
5
6
7
import subprocess
import contextlib
import pytest
import asyncio
import os
import docker
8
9
10
import json
import math
import time
11
import random
12
import re
13
14

from docker.errors import NotFound
15
16
17
from typing import Optional, List, Dict
from syrupy.extensions.json import JSONSnapshotExtension
from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError
18
19

from text_generation import AsyncClient
drbh's avatar
drbh committed
20
21
22
23
24
25
26
from text_generation.types import (
    Response,
    Details,
    InputToken,
    Token,
    BestOfSequence,
    Grammar,
drbh's avatar
drbh committed
27
28
    ChatComplete,
    ChatCompletionChunk,
29
    ChatCompletionComplete,
30
    Completion,
drbh's avatar
drbh committed
31
)
32
33
34
35
36
37

DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None)
HUGGING_FACE_HUB_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN", None)
DOCKER_VOLUME = os.getenv("DOCKER_VOLUME", "/data")


38
class ResponseComparator(JSONSnapshotExtension):
39
    rtol = 0.2
OlivierDehaene's avatar
OlivierDehaene committed
40

41
42
43
44
45
46
47
    def serialize(
        self,
        data,
        *,
        exclude=None,
        matcher=None,
    ):
48
49
50
51
52
53
54
        if (
            isinstance(data, Response)
            or isinstance(data, ChatComplete)
            or isinstance(data, ChatCompletionChunk)
            or isinstance(data, ChatCompletionComplete)
        ):
            data = data.model_dump()
55

56
        if isinstance(data, List):
57
            data = [d.model_dump() for d in data]
58
59
60
61
62
63
64
65
66
67
68
69
70
71

        data = self._filter(
            data=data, depth=0, path=(), exclude=exclude, matcher=matcher
        )
        return json.dumps(data, indent=2, ensure_ascii=False, sort_keys=False) + "\n"

    def matches(
        self,
        *,
        serialized_data,
        snapshot_data,
    ) -> bool:
        def convert_data(data):
            data = json.loads(data)
drbh's avatar
drbh committed
72
73
            if isinstance(data, Dict) and "choices" in data:
                choices = data["choices"]
74
75
76
77
78
                if isinstance(choices, List) and len(choices) >= 1:
                    if "delta" in choices[0]:
                        return ChatCompletionChunk(**data)
                    if "text" in choices[0]:
                        return Completion(**data)
drbh's avatar
drbh committed
79
                return ChatComplete(**data)
80
81
82
83

            if isinstance(data, Dict):
                return Response(**data)
            if isinstance(data, List):
84
85
86
87
88
89
                if (
                    len(data) > 0
                    and "object" in data[0]
                    and data[0]["object"] == "text_completion"
                ):
                    return [Completion(**d) for d in data]
90
91
92
93
94
95
96
                return [Response(**d) for d in data]
            raise NotImplementedError

        def eq_token(token: Token, other: Token) -> bool:
            return (
                token.id == other.id
                and token.text == other.text
97
                and math.isclose(token.logprob, other.logprob, rel_tol=self.rtol)
98
99
100
                and token.special == other.special
            )

101
        def eq_prefill_token(prefill_token: InputToken, other: InputToken) -> bool:
102
103
104
105
106
            try:
                return (
                    prefill_token.id == other.id
                    and prefill_token.text == other.text
                    and (
OlivierDehaene's avatar
OlivierDehaene committed
107
108
109
                        math.isclose(
                            prefill_token.logprob, other.logprob, rel_tol=self.rtol
                        )
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                        if prefill_token.logprob is not None
                        else prefill_token.logprob == other.logprob
                    )
                )
            except TypeError:
                return False

        def eq_best_of(details: BestOfSequence, other: BestOfSequence) -> bool:
            return (
                details.finish_reason == other.finish_reason
                and details.generated_tokens == other.generated_tokens
                and details.seed == other.seed
                and len(details.prefill) == len(other.prefill)
                and all(
                    [
                        eq_prefill_token(d, o)
                        for d, o in zip(details.prefill, other.prefill)
                    ]
                )
                and len(details.tokens) == len(other.tokens)
                and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)])
            )

        def eq_details(details: Details, other: Details) -> bool:
            return (
                details.finish_reason == other.finish_reason
                and details.generated_tokens == other.generated_tokens
                and details.seed == other.seed
                and len(details.prefill) == len(other.prefill)
                and all(
                    [
                        eq_prefill_token(d, o)
                        for d, o in zip(details.prefill, other.prefill)
                    ]
                )
                and len(details.tokens) == len(other.tokens)
                and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)])
                and (
                    len(details.best_of_sequences)
                    if details.best_of_sequences is not None
                    else 0
                )
                == (
                    len(other.best_of_sequences)
                    if other.best_of_sequences is not None
                    else 0
                )
                and (
                    all(
                        [
                            eq_best_of(d, o)
                            for d, o in zip(
                                details.best_of_sequences, other.best_of_sequences
                            )
                        ]
                    )
                    if details.best_of_sequences is not None
                    else details.best_of_sequences == other.best_of_sequences
                )
            )

171
172
173
        def eq_completion(response: Completion, other: Completion) -> bool:
            return response.choices[0].text == other.choices[0].text

drbh's avatar
drbh committed
174
175
176
177
178
179
180
181
182
183
        def eq_chat_complete(response: ChatComplete, other: ChatComplete) -> bool:
            return (
                response.choices[0].message.content == other.choices[0].message.content
            )

        def eq_chat_complete_chunk(
            response: ChatCompletionChunk, other: ChatCompletionChunk
        ) -> bool:
            return response.choices[0].delta.content == other.choices[0].delta.content

184
185
186
187
188
189
190
191
192
193
194
195
196
        def eq_response(response: Response, other: Response) -> bool:
            return response.generated_text == other.generated_text and eq_details(
                response.details, other.details
            )

        serialized_data = convert_data(serialized_data)
        snapshot_data = convert_data(snapshot_data)

        if not isinstance(serialized_data, List):
            serialized_data = [serialized_data]
        if not isinstance(snapshot_data, List):
            snapshot_data = [snapshot_data]

197
198
199
200
201
        if isinstance(serialized_data[0], Completion):
            return len(snapshot_data) == len(serialized_data) and all(
                [eq_completion(r, o) for r, o in zip(serialized_data, snapshot_data)]
            )

drbh's avatar
drbh committed
202
203
204
205
206
207
208
209
210
211
212
213
214
        if isinstance(serialized_data[0], ChatComplete):
            return len(snapshot_data) == len(serialized_data) and all(
                [eq_chat_complete(r, o) for r, o in zip(serialized_data, snapshot_data)]
            )

        if isinstance(serialized_data[0], ChatCompletionChunk):
            return len(snapshot_data) == len(serialized_data) and all(
                [
                    eq_chat_complete_chunk(r, o)
                    for r, o in zip(serialized_data, snapshot_data)
                ]
            )

215
216
217
218
219
        return len(snapshot_data) == len(serialized_data) and all(
            [eq_response(r, o) for r, o in zip(serialized_data, snapshot_data)]
        )


220
221
222
223
class GenerousResponseComparator(ResponseComparator):
    # Needed for GPTQ with exllama which has serious numerical fluctuations.
    rtol = 0.75

OlivierDehaene's avatar
OlivierDehaene committed
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
class LauncherHandle:
    def __init__(self, port: int):
        self.client = AsyncClient(f"http://localhost:{port}")

    def _inner_health(self):
        raise NotImplementedError

    async def health(self, timeout: int = 60):
        assert timeout > 0
        for _ in range(timeout):
            if not self._inner_health():
                raise RuntimeError("Launcher crashed")

            try:
                await self.client.generate("test")
                return
            except (ClientConnectorError, ClientOSError, ServerDisconnectedError) as e:
                time.sleep(1)
        raise RuntimeError("Health check failed")


class ContainerLauncherHandle(LauncherHandle):
    def __init__(self, docker_client, container_name, port: int):
        super(ContainerLauncherHandle, self).__init__(port)
        self.docker_client = docker_client
        self.container_name = container_name

    def _inner_health(self) -> bool:
        container = self.docker_client.containers.get(self.container_name)
        return container.status in ["running", "created"]


class ProcessLauncherHandle(LauncherHandle):
    def __init__(self, process, port: int):
        super(ProcessLauncherHandle, self).__init__(port)
        self.process = process

    def _inner_health(self) -> bool:
        return self.process.poll() is None


266
@pytest.fixture
267
268
def response_snapshot(snapshot):
    return snapshot.use_extension(ResponseComparator)
269

OlivierDehaene's avatar
OlivierDehaene committed
270

271
272
273
274
@pytest.fixture
def generous_response_snapshot(snapshot):
    return snapshot.use_extension(GenerousResponseComparator)

275
276
277
278
279
280
281
282
283
284
285
286

@pytest.fixture(scope="module")
def event_loop():
    loop = asyncio.get_event_loop()
    yield loop
    loop.close()


@pytest.fixture(scope="module")
def launcher(event_loop):
    @contextlib.contextmanager
    def local_launcher(
287
288
289
290
        model_id: str,
        num_shard: Optional[int] = None,
        quantize: Optional[str] = None,
        trust_remote_code: bool = False,
291
        use_flash_attention: bool = True,
drbh's avatar
drbh committed
292
        disable_grammar_support: bool = False,
OlivierDehaene's avatar
OlivierDehaene committed
293
        dtype: Optional[str] = None,
294
        revision: Optional[str] = None,
295
296
        max_input_length: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
297
    ):
298
299
        port = random.randint(8000, 10_000)
        master_port = random.randint(10_000, 20_000)
300

301
302
303
        shard_uds_path = (
            f"/tmp/tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}-server"
        )
304
305
306
307
308
309
310
311
312
313
314
315
316

        args = [
            "text-generation-launcher",
            "--model-id",
            model_id,
            "--port",
            str(port),
            "--master-port",
            str(master_port),
            "--shard-uds-path",
            shard_uds_path,
        ]

317
318
        env = os.environ

drbh's avatar
drbh committed
319
320
        if disable_grammar_support:
            args.append("--disable-grammar-support")
321
322
        if num_shard is not None:
            args.extend(["--num-shard", str(num_shard)])
323
        if quantize is not None:
324
            args.append("--quantize")
325
            args.append(quantize)
326
327
328
        if dtype is not None:
            args.append("--dtype")
            args.append(dtype)
329
330
331
        if revision is not None:
            args.append("--revision")
            args.append(revision)
332
333
        if trust_remote_code:
            args.append("--trust-remote-code")
334
335
336
337
338
339
        if max_input_length:
            args.append("--max-input-length")
            args.append(str(max_input_length))
        if max_total_tokens:
            args.append("--max-total-tokens")
            args.append(str(max_total_tokens))
340

341
342
        env["LOG_LEVEL"] = "info,text_generation_router=debug"

343
344
345
        if not use_flash_attention:
            env["USE_FLASH_ATTENTION"] = "false"

346
        with subprocess.Popen(
347
            args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env
348
        ) as process:
349
            yield ProcessLauncherHandle(process, port)
350
351
352
353
354

            process.terminate()
            process.wait(60)

            launcher_output = process.stdout.read().decode("utf-8")
355
            print(launcher_output, file=sys.stderr)
356
357
358
359

            process.stdout.close()
            process.stderr.close()

360
361
362
        if not use_flash_attention:
            del env["USE_FLASH_ATTENTION"]

363
364
    @contextlib.contextmanager
    def docker_launcher(
365
366
367
368
        model_id: str,
        num_shard: Optional[int] = None,
        quantize: Optional[str] = None,
        trust_remote_code: bool = False,
369
        use_flash_attention: bool = True,
drbh's avatar
drbh committed
370
        disable_grammar_support: bool = False,
OlivierDehaene's avatar
OlivierDehaene committed
371
        dtype: Optional[str] = None,
372
        revision: Optional[str] = None,
373
374
        max_input_length: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
375
    ):
376
        port = random.randint(8000, 10_000)
377
378
379

        args = ["--model-id", model_id, "--env"]

drbh's avatar
drbh committed
380
381
        if disable_grammar_support:
            args.append("--disable-grammar-support")
382
383
        if num_shard is not None:
            args.extend(["--num-shard", str(num_shard)])
384
        if quantize is not None:
385
            args.append("--quantize")
386
            args.append(quantize)
387
388
389
        if dtype is not None:
            args.append("--dtype")
            args.append(dtype)
390
391
392
        if revision is not None:
            args.append("--revision")
            args.append(revision)
393
394
        if trust_remote_code:
            args.append("--trust-remote-code")
395
396
397
398
399
400
        if max_input_length:
            args.append("--max-input-length")
            args.append(str(max_input_length))
        if max_total_tokens:
            args.append("--max-total-tokens")
            args.append(str(max_total_tokens))
401
402
403
404
405
406
407
408
409
410
411
412
413
414

        client = docker.from_env()

        container_name = f"tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}"

        try:
            container = client.containers.get(container_name)
            container.stop()
            container.wait()
        except NotFound:
            pass

        gpu_count = num_shard if num_shard is not None else 1

415
416
417
        env = {
            "LOG_LEVEL": "info,text_generation_router=debug",
        }
418
419
420
        if not use_flash_attention:
            env["USE_FLASH_ATTENTION"] = "false"

421
422
423
424
425
426
427
428
429
430
431
432
        if HUGGING_FACE_HUB_TOKEN is not None:
            env["HUGGING_FACE_HUB_TOKEN"] = HUGGING_FACE_HUB_TOKEN

        volumes = []
        if DOCKER_VOLUME:
            volumes = [f"{DOCKER_VOLUME}:/data"]

        container = client.containers.run(
            DOCKER_IMAGE,
            command=args,
            name=container_name,
            environment=env,
433
            auto_remove=False,
434
435
436
437
438
439
            detach=True,
            device_requests=[
                docker.types.DeviceRequest(count=gpu_count, capabilities=[["gpu"]])
            ],
            volumes=volumes,
            ports={"80/tcp": port},
OlivierDehaene's avatar
OlivierDehaene committed
440
            shm_size="1G",
441
442
        )

443
        yield ContainerLauncherHandle(client, container.name, port)
444

445
446
447
        if not use_flash_attention:
            del env["USE_FLASH_ATTENTION"]

448
449
450
451
452
        try:
            container.stop()
            container.wait()
        except NotFound:
            pass
453
454

        container_output = container.logs().decode("utf-8")
455
        print(container_output, file=sys.stderr)
456

457
458
        container.remove()

459
460
461
462
463
464
465
466
    if DOCKER_IMAGE is not None:
        return docker_launcher
    return local_launcher


@pytest.fixture(scope="module")
def generate_load():
    async def generate_load_inner(
drbh's avatar
drbh committed
467
468
469
470
471
472
473
        client: AsyncClient,
        prompt: str,
        max_new_tokens: int,
        n: int,
        seed: Optional[int] = None,
        grammar: Optional[Grammar] = None,
        stop_sequences: Optional[List[str]] = None,
474
475
    ) -> List[Response]:
        futures = [
476
            client.generate(
drbh's avatar
drbh committed
477
478
479
480
481
482
                prompt,
                max_new_tokens=max_new_tokens,
                decoder_input_details=True,
                seed=seed,
                grammar=grammar,
                stop_sequences=stop_sequences,
483
484
            )
            for _ in range(n)
485
486
        ]

487
        return await asyncio.gather(*futures)
488
489

    return generate_load_inner