rw.py 2.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import torch

from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import List, Optional, Tuple

from text_generation_server.models import CausalLM


class RW(CausalLM):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        trust_remote_code: bool = False,
    ):
        if torch.cuda.is_available():
            device = torch.device("cuda")
19
            dtype = torch.float16
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        else:
            if quantize:
                raise ValueError("quantization is not available on CPU")

            device = torch.device("cpu")
            dtype = torch.float32

        tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            revision=revision,
            torch_dtype=dtype,
            device_map="auto"
            if torch.cuda.is_available() and torch.cuda.device_count() > 1
            else None,
            load_in_8bit=quantize == "bitsandbytes",
            trust_remote_code=trust_remote_code,
        )
        if torch.cuda.is_available() and torch.cuda.device_count() == 1:
            model = model.cuda()

        if tokenizer.pad_token_id is None:
            if model.config.pad_token_id is not None:
                tokenizer.pad_token_id = model.config.pad_token_id
            elif model.config.eos_token_id is not None:
                tokenizer.pad_token_id = model.config.eos_token_id
            elif tokenizer.eos_token_id is not None:
                tokenizer.pad_token_id = tokenizer.eos_token_id
            else:
                tokenizer.add_special_tokens({"pad_token": "[PAD]"})

        super(CausalLM, self).__init__(
            model=model,
            tokenizer=tokenizer,
            requires_padding=True,
            dtype=dtype,
            device=device,
        )

    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
        # Model Forward
        if past_key_values is not None:
            reshaped_past_key_values = []
            for layer in past_key_values:
                past_keys, past_values = layer
                reshaped_past_key_values.append(
                    (
                        past_keys.view(-1, *past_keys.shape[-2:]),
                        past_values.view(-1, *past_values.shape[-2:]),
                    )
                )
            past_key_values = reshaped_past_key_values

        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
        )
        return outputs.logits, outputs.past_key_values