weights.py 11.9 KB
Newer Older
1
from abc import ABC, abstractmethod
2
from pathlib import Path
3
from typing import Dict, List, Optional, Union
4
from safetensors import safe_open
5
import torch
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


class WeightsLoader(ABC):
    """
    Instances of this type implement higher-level weight loading.

    At a low-level, every weight is stored in the Safetensors format.
    The interpretation of weights may be different however, for instance
    could be packed, quantized weights. Loaders are responsible for
    interpreting the raw tensors, sharding tensors in a manner compatible
    with the format, etc.
    """

    @abstractmethod
    def get_weights_col_packed(
        self,
        weights: "Weights",
        prefix: str,
        block_sizes: Union[int, List[int]],
    ):
        """
        Get the packed weights at the given prefix with column-splitting for
        tensor parallelism. This method should be used when multiple different
        weights are packed into a tensor, for instance, query/key/value
        weights or a gate/up projection.

        The `block_sizes` determines the proportions of the packed tensors.
        The columns are split in equally sized blocks when `block_sizes` is an
        `int`, or in blocks proportional given to the sizes. For instance
        `[2, 1, 1]` will divide an input with dimensionality `1024` in
        `[512, 256, 256]`.
        """
        ...

    def get_weights_col(self, weights: "Weights", prefix: str):
        """
        Get weights at the given prefix and apply column-splitting for tensor
        paralllism.
        """
        return weights.get_multi_weights_col([prefix], 0)

    @abstractmethod
    def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
        """
        Get the weights at the given prefixes, column-split them for tensor
        parallelim, and then concatenate the weights along the given dimension.
        """
        ...

    @abstractmethod
    def get_weights_row(self, weights: "Weights", prefix: str):
        """
        Get the weights at the given prefix and apply row-splitting for tensor
        parallism.
        """
        ...


class DefaultWeightsLoader(WeightsLoader):
    """
    Loader that uses tensors as-is with the exception of applying sharding
    and/or concatenation.
    """

    def get_weights_col_packed(
        self,
        weights: "Weights",
        prefix: str,
        block_sizes: Union[int, List[int]],
    ):
        return weights.get_packed_sharded(
            f"{prefix}.weight", dim=0, block_sizes=block_sizes
        )

    def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
        w = [weights.get_sharded(f"{p}.weight", dim=0) for p in prefixes]
        return torch.cat(w, dim=dim)

    def get_weights_row(self, weights: "Weights", prefix: str):
        return weights.get_sharded(f"{prefix}.weight", dim=1)
86
87
88


class Weights:
89
90
91
92
93
94
    def __init__(
        self,
        filenames: List[Path],
        device,
        dtype,
        process_group,
95
        weights_loader: WeightsLoader,
96
        aliases: Optional[Dict[str, List[str]]] = None,
OlivierDehaene's avatar
OlivierDehaene committed
97
        prefix: Optional[str] = None,
98
    ):
99
100
101
102
103
104
105
106
107
        routing = {}
        for filename in filenames:
            with safe_open(filename, framework="pytorch") as f:
                for k in f.keys():
                    if k in routing:
                        raise RuntimeError(
                            f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                        )
                    routing[k] = filename
108
109
110
        if aliases is None:
            aliases = {}
        self.aliases = aliases
111
112
113
114
        self.routing = routing
        self.device = device
        self.dtype = dtype
        self.process_group = process_group
Nicolas Patry's avatar
Nicolas Patry committed
115
        self.prefix = prefix
116
        self.weights_loader = weights_loader
117
118
119
120
121
122
123
124
125
        self._handles = {}

    def _get_handle(self, filename):
        if filename not in self._handles:
            f = safe_open(filename, framework="pytorch")
            self._handles[filename] = f

        return self._handles[filename]

126
    def get_filename(self, tensor_name: str) -> (str, str):
Nicolas Patry's avatar
Nicolas Patry committed
127
128
129
130
131
132
133
134
135
136
        names = [tensor_name]
        if self.prefix is not None:
            prefixed = f"{self.prefix}.{tensor_name}"
            names.append(prefixed)
        for name in names:
            filename = self.routing.get(name, None)
            if filename is not None:
                return str(filename), name

            aliases = self.aliases.get(name, [])
137
138
139
140
            for alias in aliases:
                filename = self.routing.get(alias, None)
                if filename is not None:
                    return str(filename), alias
Nicolas Patry's avatar
Nicolas Patry committed
141
        raise RuntimeError(f"weight {tensor_name} does not exist")
142
143

    def _get_slice(self, tensor_name: str):
144
        filename, tensor_name = self.get_filename(tensor_name)
145
146
147
148
149
150
151
        f = self._get_handle(filename)
        slice_ = f.get_slice(tensor_name)
        return slice_

    def get_shape(self, tensor_name: str):
        return self._get_slice(tensor_name).get_shape()

OlivierDehaene's avatar
OlivierDehaene committed
152
    def get_tensor(self, tensor_name: str, to_device=True):
153
        filename, tensor_name = self.get_filename(tensor_name)
154
155
        f = self._get_handle(filename)
        tensor = f.get_tensor(tensor_name)
156
        # Special case for gptq which shouldn't convert
157
158
159
        # u4 which are disguised as int32. Exl2 uses int16
        # as well.
        if tensor.dtype not in [torch.int16, torch.int32, torch.int64]:
160
            tensor = tensor.to(dtype=self.dtype)
xiaobin's avatar
xiaobin committed
161
162
        if to_device:
            tensor = tensor.to(device=self.device)
163
164
        return tensor

165
    def get_partial_sharded(self, tensor_name: str, dim: int):
166
        filename, tensor_name = self.get_filename(tensor_name)
xiaobin's avatar
xiaobin committed
167
168
        f = self._get_handle(filename)
        slice_ = f.get_slice(tensor_name)
169
170
171
172
        world_size = self.process_group.size()
        rank = self.process_group.rank()

        size = slice_.get_shape()[dim]
173
        block_size = (size + world_size - 1) // world_size
174
175
176
177
178
179
180
181
182
        start = rank * block_size
        stop = (rank + 1) * block_size

        if dim == 0:
            tensor = slice_[start:stop]
        elif dim == 1:
            tensor = slice_[:, start:stop]
        else:
            raise NotImplementedError("Let's make that generic when needed")
183
        # Special case for gptq which shouldn't convert
184
185
        # u4 which are disguised as int32. exl2 uses int16.
        if tensor.dtype not in (torch.int16, torch.int32):
186
            tensor = tensor.to(dtype=self.dtype)
187
188
        tensor = tensor.to(device=self.device)
        return tensor
189

190
191
192
193
194
195
196
197
198
199
200
    def get_sharded(self, tensor_name: str, dim: int):
        filename, tensor_name = self.get_filename(tensor_name)
        f = self._get_handle(filename)
        slice_ = f.get_slice(tensor_name)
        world_size = self.process_group.size()
        size = slice_.get_shape()[dim]
        assert (
            size % world_size == 0
        ), f"The choosen size {size} is not compatible with sharding on {world_size} shards"
        return self.get_partial_sharded(tensor_name, dim)

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    def get_packed_sharded(
        self, tensor_name: str, dim: int, block_sizes: Union[int, List[int]]
    ) -> torch.Tensor:
        """
        Get a shard from a tensor that packs multiple tensors.

        When a tensor packs multiple tensors (such as QKV or an up
        projection + gate projection), sharding with `get_sharded` is not
        safe since it would not split the packed tensors across shards.

        This method shards a tensor, such that the packed tensors are
        split across shards.

        The columns are split in equally sized blocks when blocks is an `int`, or
        in blocks proportional given to the sizes. For instance `[2, 1, 1]` will
        divide an input with dimensionality `1024` in `[512, 256, 256]`. This is
        convenient for e.g. splitting QKV without knowing the storage details of
        quantized weights.
        """
        slice_ = self._get_slice(tensor_name)
        total_size = slice_.get_shape()[dim]
222
223
        block_sizes = _blocks_to_block_sizes(total_size=total_size, blocks=block_sizes)

xiaobin's avatar
xiaobin committed
224
225
226
        world_size = self.process_group.size()
        rank = self.process_group.rank()

227
        tensors = []
228
229
230
231
        block_offset = 0
        for block_size in block_sizes:
            assert (
                block_size % world_size == 0
232
            ), f"Prepacked tensor cannot be sharded across {world_size} shards"
233
234
235
            shard_block_size = block_size // world_size
            start = rank * shard_block_size
            stop = (rank + 1) * shard_block_size
236
237
238
239
240
241
242
            if dim == 0:
                tensor = slice_[block_offset + start : block_offset + stop]
            elif dim == 1:
                tensor = slice_[:, block_offset + start : block_offset + stop]
            else:
                raise NotImplementedError("Currently only dim=0 or dim=1 is supported")
            tensors.append(tensor)
243
            block_offset += block_size
244
245
        tensor = torch.cat(tensors, dim=dim)
        tensor = tensor.to(device=self.device)
246

247
248
249
250
251
        # Avoid casting quantizer dtypes.
        if tensor.dtype not in [torch.int16, torch.int32, torch.int64]:
            tensor = tensor.to(dtype=self.dtype)

        return tensor
xiaobin's avatar
xiaobin committed
252

253
254
255
256
257
258
259
260
    def get_weights_col_packed_qkv(
        self,
        prefix: str,
        quantize: str,
        num_heads: int,
        num_key_value_heads: int,
    ):
        return self.get_weights_col_packed(
261
            prefix, [num_heads, num_key_value_heads, num_key_value_heads]
262
        )
Nicolas Patry's avatar
Nicolas Patry committed
263

264
265
    def get_weights_col_packed_gate_up(self, prefix: str):
        return self.get_weights_col_packed(prefix, 2)
Nicolas Patry's avatar
Nicolas Patry committed
266

267
    def get_weights_col_packed(self, prefix: str, block_sizes: Union[int, List[int]]):
xiaobin's avatar
xiaobin committed
268
        """
269
270
271
272
273
        The columns are split in equally sized blocks when blocks is an `int`, or
        in blocks proportional given to the sizes. For instance `[2, 1, 1]` will
        divide an input with dimensionality `1024` in `[512, 256, 256]`. This is
        convenient for e.g. splitting QKV without knowing the storage details of
        quantized weights.
xiaobin's avatar
xiaobin committed
274
        """
275
        return self.weights_loader.get_weights_col_packed(self, prefix, block_sizes)
276

277
278
    def get_weights_col(self, prefix: str):
        return self.weights_loader.get_weights_col(self, prefix)
279

280
281
    def get_multi_weights_col(self, prefixes: List[str], dim: int):
        return self.weights_loader.get_multi_weights_col(self, prefixes, dim)
OlivierDehaene's avatar
OlivierDehaene committed
282

xiaobin's avatar
xiaobin committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    def get_tensor_shard(self, var, dim):
        world_size = self.process_group.size()
        rank = self.process_group.rank()
        block_size = var.size()[dim] // world_size
        start = rank * block_size
        stop = (rank + 1) * block_size
        if dim == 0:
            tensor = var[start:stop]
        elif dim == 1:
            tensor = var[:, start:stop]
        else:
            raise NotImplementedError("Let's make that generic when needed")
        tensor = tensor.to(dtype=self.dtype)
        tensor = tensor.to(device=self.device)
OlivierDehaene's avatar
OlivierDehaene committed
297
        return tensor
298

299
300
    def get_weights_row(self, prefix: str):
        return self.weights_loader.get_weights_row(self, prefix)
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328


def _blocks_to_block_sizes(total_size: int, blocks: Union[int, List[int]]) -> List[int]:
    """
    Convert block count or proportions to block sizes.

    This function accepts

    - The number of blocks (int), in which case the block size is
      total_size//blocks; or
    - A list of block sizes (List[int]).

    In the latter case, if sum(blocks) < total_size, the ratios between
    the block sizes will be preserved. For instance, if blocks is
    [2, 1, 1] and total_size is 1024, the returned block sizes are
    [512, 256, 256].
    """
    if isinstance(blocks, list):
        total_blocks = sum(blocks)
        assert (
            total_size % total_blocks == 0
        ), f"Cannot split {total_size} in proportional blocks: {blocks}"
        part_size = total_size // total_blocks
        return [part_size * block for block in blocks]
    else:
        assert total_size % blocks == 0, f"Prepacked is not divisible by {blocks}"
        single_size = total_size // blocks
        return [single_size] * blocks