infer.rs 12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
use crate::GenerateRequest;
use crate::{Db, Entry, Token};
use nohash_hasher::IntMap;
use std::future::Future;
use std::sync::Arc;
use text_generation_client::{
    Batch, ClientError, GeneratedText, Generation, PrefillTokens, ShardedClient,
};
use thiserror::Error;
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
use tracing::instrument;

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
    /// Request database
    db: Db,
    /// Shared state
    shared: Arc<Shared>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
}

/// Infer shared state
struct Shared {
    /// Batching background Tokio task notifier
    batching_task: Notify,
}

impl Infer {
    pub(crate) fn new(
        client: ShardedClient,
        validation: Validation,
        max_batch_size: usize,
        max_waiting_tokens: usize,
        max_concurrent_requests: usize,
    ) -> Self {
        // Infer shared state
        let db = Db::new();
        let shared = Arc::new(Shared {
            batching_task: Notify::new(),
        });

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client,
            max_batch_size,
            max_waiting_tokens,
            db.clone(),
            shared.clone(),
        ));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

        Self {
            validation,
            db,
            shared,
            limit_concurrent_requests: semaphore,
        }
    }

    /// Add a new request to the database and return a stream of InferStreamResponse
    pub(crate) async fn generate_stream(
        &self,
        request: GenerateRequest,
    ) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
        // Limit concurrent requests by acquiring a permit from the semaphore
        // This permit will live as long as Entry
        let permit = self.clone().limit_concurrent_requests.try_acquire_owned()?;

        // Validate request
        let (input_length, validated_request) = self.validation.validate(request).await?;

        // MPSC channel to communicate with the background batching task
        let (response_tx, response_rx) = mpsc::unbounded_channel();

        // Append the request to the database
        self.db.append(Entry {
            request: validated_request,
            response_tx,
            input_length,
            time: Instant::now(),
            batch_time: None,
            _permit: permit,
        });

        // Notify the background task that we have a new entry in the database that needs
        // to be batched
        self.shared.batching_task.notify_one();

        // Return stream
        Ok(UnboundedReceiverStream::new(response_rx))
    }

    /// Add a new request to the database and return a InferResponse
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
        // Create stream
        let mut stream = self.generate_stream(request).await?;

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(tokens) => {
                    // Create Token objects
                    // We do that here instead of in the Python code as Rust for loops are faster
                    result_prefill = tokens
                        .ids
                        .into_iter()
                        .zip(tokens.logprobs.into_iter())
                        .zip(tokens.texts.into_iter())
                        .map(|((id, logprob), text)| Token(id, text, logprob))
                        .collect();
                }
                // Push last token
                InferStreamResponse::Token(token) => result_tokens.push(token),
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
                } => {
                    result_tokens.push(token);
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
                tokens: result_tokens,
                generated_text,
                queued,
                start,
            })
        } else {
            Err(InferError::IncompleteGeneration)
        }
    }
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
#[instrument(skip(client, db, shared))]
async fn batching_task(
    mut client: ShardedClient,
    max_batch_size: usize,
    max_waiting_tokens: usize,
    db: Db,
    shared: Arc<Shared>,
) {
    // Minimum batch size after which we try to add more requests
    let limit_min_batch_size = (max_batch_size / 2) as u32;

    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        shared.batching_task.notified().await;

        // Get the next batch from the DB
        // This batch might be smaller than the maximum batch size if there are not enough requests
        // waiting in the DB
        while let Some((mut entries, batch)) = db.next_batch(None, max_batch_size) {
            let mut cached_batch = wrap_future(client.prefill(batch), &mut entries).await;
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
                let mut batches = vec![batch];

                // If the current batch is too small, we try to add more requests to it
                if batch_size <= limit_min_batch_size {
                    let min_size = match waiting_tokens {
                        // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                        // to add a new batch even though its size might be small
                        _ if waiting_tokens >= max_waiting_tokens => None,
                        // Minimum size criteria
                        _ => Some(limit_min_batch_size as usize),
                    };

                    // Try to get a new batch
                    if let Some((mut new_entries, new_batch)) =
                        db.next_batch(min_size, max_batch_size - batch_size as usize)
                    {
                        // Generate one token for this new batch to have the attention past in cache
                        let new_cached_batch =
                            wrap_future(client.prefill(new_batch), &mut new_entries).await;
                        // Reset waiting counter
                        waiting_tokens = 1;
                        // Extend current batch with the new batch
                        if let Some(new_cached_batch) = new_cached_batch {
                            entries.extend(new_entries);
                            batches.push(new_cached_batch);
                        }
                    }
                }

                cached_batch = wrap_future(client.decode(batches), &mut entries).await;
                waiting_tokens += 1;
            }
        }
    }
}

/// Wrap a future inside a match statement to handle errors and send the responses to Infer
async fn wrap_future(
    future: impl Future<Output = Result<(Vec<Generation>, Option<Batch>), ClientError>>,
    entries: &mut IntMap<u64, Entry>,
) -> Option<Batch> {
    match future.await {
        Ok((generations, next_batch)) => {
            send_generations(generations, entries);
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
            send_error(err, entries);
            None
        }
    }
}

/// Send errors to Infer for all `entries`
fn send_error(error: ClientError, entries: &mut IntMap<u64, Entry>) {
    entries.drain().for_each(|(_, entry)| {
        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
            .send(Err(InferError::GenerationError(error.to_string())))
            .unwrap_or(());
    });
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
fn send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&generation.request_id)
            .expect("ID not found in entries. This is a bug.");

        if let Some(prefill_tokens) = generation.prefill_tokens {
            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))
                .unwrap_or(());
        }

        // Create last Token
        let token = Token(
            generation.token_id,
            generation.token_text,
            generation.token_logprob,
        );

        if let Some(generated_text) = generation.generated_text {
            // Remove entry as this is the last message
            // We can `expect` here as the request id should always be in the entries
            let entry = entries
                .remove(&generation.request_id)
                .expect("ID not found in entries. This is a bug.");

            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::End {
                    token,
                    generated_text,
                    queued: entry.time,
                    start: entry.batch_time.unwrap(),
                }))
                .unwrap_or(());
        } else {
            // Send message
            // unwrap_or is valid here as we don't care if the receiver is gone.
            entry
                .response_tx
                .send(Ok(InferStreamResponse::Token(token)))
                .unwrap_or(());
        }
    });
}

#[derive(Debug)]
pub(crate) enum InferStreamResponse {
    // Optional first message
    Prefill(PrefillTokens),
    // Intermediate messages
    Token(Token),
    // Last message
    End {
        token: Token,
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
    pub(crate) prefill: Vec<Token>,
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
}