benchmarks.py 8.98 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import argparse
import datetime
import json
import os
import traceback
from typing import Dict, Tuple, List

import GPUtil
import docker
from docker.models.containers import Container
from loguru import logger
import pandas as pd


class InferenceEngineRunner:
    def __init__(self, model: str):
        self.model = model

    def run(self, parameters: list[tuple], gpus: int = 0):
        NotImplementedError("This method should be implemented by the subclass")

    def stop(self):
        NotImplementedError("This method should be implemented by the subclass")


class TGIDockerRunner(InferenceEngineRunner):
27
28
29
30
31
32
    def __init__(
        self,
        model: str,
        image: str = "ghcr.io/huggingface/text-generation-inference:latest",
        volumes=None,
    ):
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        super().__init__(model)
        if volumes is None:
            volumes = []
        self.container = None
        self.image = image
        self.volumes = volumes

    def run(self, parameters: list[tuple], gpus: int = 0):
        params = f"--model-id {self.model} --port 8080"
        for p in parameters:
            params += f" --{p[0]} {str(p[1])}"
        logger.info(f"Running TGI with parameters: {params}")
        volumes = {}
        for v in self.volumes:
            volumes[v[0]] = {"bind": v[1], "mode": "rw"}
48
49
50
51
52
53
54
55
56
        self.container = run_docker(
            self.image,
            params,
            "Connected",
            "ERROR",
            volumes=volumes,
            gpus=gpus,
            ports={"8080/tcp": 8080},
        )
57
58
59
60
61
62
63

    def stop(self):
        if self.container:
            self.container.stop()


class BenchmarkRunner:
64
65
66
67
68
    def __init__(
        self,
        image: str = "ghcr.io/huggingface/text-generation-inference-benchmark:latest",
        volumes: List[Tuple[str, str]] = None,
    ):
69
70
71
72
73
74
75
76
77
78
        if volumes is None:
            volumes = []
        self.container = None
        self.image = image
        self.volumes = volumes

    def run(self, parameters: list[tuple], network_mode):
        params = "text-generation-inference-benchmark"
        for p in parameters:
            params += f" --{p[0]} {str(p[1])}" if p[1] is not None else f" --{p[0]}"
79
80
81
        logger.info(
            f"Running text-generation-inference-benchmarks with parameters: {params}"
        )
82
83
84
        volumes = {}
        for v in self.volumes:
            volumes[v[0]] = {"bind": v[1], "mode": "rw"}
85
86
87
88
89
90
91
92
93
94
95
96
        self.container = run_docker(
            self.image,
            params,
            "Benchmark finished",
            "Fatal:",
            volumes=volumes,
            extra_env={
                "RUST_LOG": "text_generation_inference_benchmark=info",
                "RUST_BACKTRACE": "full",
            },
            network_mode=network_mode,
        )
97
98
99
100
101
102

    def stop(self):
        if self.container:
            self.container.stop()


103
104
105
106
107
108
109
110
111
112
113
def run_docker(
    image: str,
    args: str,
    success_sentinel: str,
    error_sentinel: str,
    ports: Dict[str, int] = None,
    volumes=None,
    network_mode: str = "bridge",
    gpus: int = 0,
    extra_env: Dict[str, str] = None,
) -> Container:
114
115
116
117
118
119
120
121
    if ports is None:
        ports = {}
    if volumes is None:
        volumes = {}
    if extra_env is None:
        extra_env = {}
    client = docker.from_env(timeout=300)
    # retrieve the GPU devices from CUDA_VISIBLE_DEVICES
122
    devices = [f"{i}" for i in range(get_num_gpus())][:gpus]
123
124
    environment = {"HF_TOKEN": os.environ.get("HF_TOKEN")}
    environment.update(extra_env)
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    container = client.containers.run(
        image,
        args,
        detach=True,
        device_requests=(
            [docker.types.DeviceRequest(device_ids=devices, capabilities=[["gpu"]])]
            if gpus > 0
            else None
        ),
        volumes=volumes,
        shm_size="1g",
        ports=ports,
        network_mode=network_mode,
        environment=environment,
    )
140
141
142
143
144
145
146
147
148
149
150
151
152
    for line in container.logs(stream=True):
        print(line.decode("utf-8"), end="")
        if success_sentinel.encode("utf-8") in line:
            break
        if error_sentinel.encode("utf-8") in line:
            container.stop()
            raise Exception(f"Error starting container: {line}")
    return container


def get_gpu_names() -> str:
    gpus = GPUtil.getGPUs()
    if len(gpus) == 0:
153
        return ""
154
155
156
157
158
159
    return f'{len(gpus)}x{gpus[0].name if gpus else "No GPU available"}'


def get_gpu_name() -> str:
    gpus = GPUtil.getGPUs()
    if len(gpus) == 0:
160
        return ""
161
162
163
164
165
166
167
168
169
170
171
172
173
    return gpus[0].name


def get_num_gpus() -> int:
    return len(GPUtil.getGPUs())


def build_df(model: str, data_files: dict[str, str]) -> pd.DataFrame:
    df = pd.DataFrame()
    now = datetime.datetime.now(datetime.timezone.utc)
    created_at = now.isoformat()  # '2024-10-02T11:53:17.026215+00:00'
    # Load the results
    for key, filename in data_files.items():
174
        with open(filename, "r") as f:
175
            data = json.load(f)
176
            for result in data["results"]:
177
                entry = result
178
                [config] = pd.json_normalize(result["config"]).to_dict(orient="records")
179
                entry.update(config)
180
181
182
183
184
185
                entry["engine"] = data["config"]["meta"]["engine"]
                entry["tp"] = data["config"]["meta"]["tp"]
                entry["version"] = data["config"]["meta"]["version"]
                entry["model"] = model
                entry["created_at"] = created_at
                del entry["config"]
186
187
188
189
190
                df = pd.concat([df, pd.DataFrame(entry, index=[0])])
    return df


def main(sha, results_file):
191
    results_dir = "results"
192
193
    # get absolute path
    results_dir = os.path.join(os.path.dirname(__file__), results_dir)
194
    logger.info("Starting benchmark")
195
    models = [
196
        ("meta-llama/Llama-3.1-8B-Instruct", 1),
197
198
199
200
201
202
203
        # ('meta-llama/Llama-3.1-70B-Instruct', 4),
        # ('mistralai/Mixtral-8x7B-Instruct-v0.1', 2),
    ]
    success = True
    for model in models:
        tgi_runner = TGIDockerRunner(model[0])
        # create results directory
204
205
206
        model_dir = os.path.join(
            results_dir, f'{model[0].replace("/", "_").replace(".", "_")}'
        )
207
208
        os.makedirs(model_dir, exist_ok=True)
        runner = BenchmarkRunner(
209
            volumes=[(model_dir, "/opt/text-generation-inference-benchmark/results")]
210
211
        )
        try:
212
213
            tgi_runner.run([("max-concurrent-requests", 512)], gpus=model[1])
            logger.info(f"TGI started for model {model[0]}")
214
            parameters = [
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
                ("tokenizer-name", model[0]),
                ("max-vus", 800),
                ("url", "http://localhost:8080"),
                ("duration", "120s"),
                ("warmup", "30s"),
                ("benchmark-kind", "rate"),
                (
                    "prompt-options",
                    "num_tokens=200,max_tokens=220,min_tokens=180,variance=10",
                ),
                (
                    "decode-options",
                    "num_tokens=200,max_tokens=220,min_tokens=180,variance=10",
                ),
                (
                    "extra-meta",
                    f'"engine=TGI,tp={model[1]},version={sha},gpu={get_gpu_name()}"',
                ),
                ("no-console", None),
234
            ]
235
            rates = [("rates", f"{r / 10.}") for r in list(range(8, 248, 8))]
236
            parameters.extend(rates)
237
            runner.run(parameters, f"container:{tgi_runner.container.id}")
238
        except Exception as e:
239
            logger.error(f"Error running benchmark for model {model[0]}: {e}")
240
241
242
243
244
245
246
            # print the stack trace
            print(traceback.format_exc())
            success = False
        finally:
            tgi_runner.stop()
            runner.stop()
    if not success:
247
        logger.error("Some benchmarks failed")
248
249
250
251
        exit(1)

    df = pd.DataFrame()
    # list recursively directories
252
253
254
255
256
257
    directories = [
        f"{results_dir}/{d}"
        for d in os.listdir(results_dir)
        if os.path.isdir(f"{results_dir}/{d}")
    ]
    logger.info(f"Found result directories: {directories}")
258
259
260
    for directory in directories:
        data_files = {}
        for filename in os.listdir(directory):
261
262
263
264
265
266
267
268
269
270
            if filename.endswith(".json"):
                data_files[filename.split(".")[-2]] = f"{directory}/{filename}"
        logger.info(f"Processing directory {directory}")
        df = pd.concat([df, build_df(directory.split("/")[-1], data_files)])
    df["device"] = get_gpu_name()
    df["error_rate"] = (
        df["failed_requests"]
        / (df["failed_requests"] + df["successful_requests"])
        * 100.0
    )
271
272
273
274
275
    df.to_parquet(results_file)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
276
277
278
279
280
281
282
    parser.add_argument(
        "--sha", help="SHA of the commit to add to the results", required=True
    )
    parser.add_argument(
        "--results-file",
        help="The file where to store the results, can be a local file or a s3 path",
    )
283
284
    args = parser.parse_args()
    if args.results_file is None:
285
        results_file = f"{args.sha}.parquet"
286
287
288
289
    else:
        results_file = args.results_file

    main(args.sha, results_file)