test_sampler.py 6.74 KB
Newer Older
huangwb's avatar
huangwb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# pylint: disable=protected-access
import random
from typing import Tuple
from unittest.mock import patch

import pytest
import torch

from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.utils import set_random_seed
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata
from vllm.worker.worker import Worker


class MockLogitsSampler(Sampler):

    def __init__(self, vocab_size: int, fake_logits: torch.Tensor):
        super().__init__(vocab_size=vocab_size)
        self.fake_logits = fake_logits

    def forward(self, *args, **kwargs):
        with patch("vllm.model_executor.layers.sampler._prune_hidden_states",
                   lambda x, y: x):
            with patch("vllm.model_executor.layers.sampler._get_logits",
                       lambda *args, **kwargs: self.fake_logits):
                return super().forward(*args, **kwargs)


def _prepare_test(
    batch_size: int
) -> Tuple[torch.Tensor, torch.Tensor, MockLogitsSampler, Worker]:
    vocab_size = 32000
    input_tensor = torch.rand((batch_size, 1024),
                              device="cuda",
                              dtype=torch.float16)
    fake_logits = torch.full((batch_size, vocab_size),
                             1e-2,
                             device=input_tensor.device,
                             dtype=input_tensor.dtype)
    sampler = MockLogitsSampler(32000, fake_logits)
    worker = Worker(None, None, None)
    worker.block_size = 16
    return input_tensor, fake_logits, sampler, worker


RANDOM_SEEDS = list(range(128))


@pytest.mark.parametrize("seed", RANDOM_SEEDS)
def test_sampler_all_greedy(seed: int):
    set_random_seed(seed)
    batch_size = random.randint(1, 256)
    input_tensor, fake_logits, sampler, worker = _prepare_test(batch_size)

    seq_group_metadata_list = []
    for i in range(batch_size):
        seq_group_metadata_list.append(
            SequenceGroupMetadata(
                request_id=f"test_{i}",
                is_prompt=True,
                seq_data={0: SequenceData([1, 2, 3])},
                sampling_params=SamplingParams(temperature=0, ),
                block_tables={0: [1]},
            ))

    _, _, input_metadata = worker._prepare_inputs(seq_group_metadata_list)
    sampler_output = sampler(embedding=None,
                             hidden_states=input_tensor,
                             input_metadata=input_metadata)
    expected = torch.argmax(fake_logits, dim=-1)
    for i, sequence_output in enumerate(sampler_output):
        for nth_output in sequence_output.samples:
            assert nth_output.output_token == expected[i].item()


@pytest.mark.parametrize("seed", RANDOM_SEEDS)
def test_sampler_all_random(seed: int):
    set_random_seed(seed)
    batch_size = random.randint(1, 256)
    input_tensor, fake_logits, sampler, worker = _prepare_test(batch_size)

    for i in range(batch_size):
        fake_logits[i, i] = 1e2

    seq_group_metadata_list = []
    for i in range(batch_size):
        seq_group_metadata_list.append(
            SequenceGroupMetadata(
                request_id=f"test_{i}",
                is_prompt=True,
                seq_data={0: SequenceData([1, 2, 3])},
                sampling_params=SamplingParams(
                    temperature=1.0,
                    n=random.randint(1, 10),
                ),
                block_tables={0: [1]},
            ))

    _, _, input_metadata = worker._prepare_inputs(seq_group_metadata_list)
    sampler_output = sampler(embedding=None,
                             hidden_states=input_tensor,
                             input_metadata=input_metadata)
    for i, sequence_output in enumerate(sampler_output):
        for nth_output in sequence_output.samples:
            assert nth_output.output_token == i


@pytest.mark.parametrize("seed", RANDOM_SEEDS)
def test_sampler_all_beam(seed: int):
    set_random_seed(seed)
    batch_size = random.randint(1, 256)
    input_tensor, _, sampler, worker = _prepare_test(batch_size)

    seq_group_metadata_list = []
    for i in range(batch_size):
        seq_group_metadata_list.append(
            SequenceGroupMetadata(
                request_id=f"test_{i}",
                is_prompt=True,
                seq_data={0: SequenceData([1, 2, 3])},
                sampling_params=SamplingParams(
                    temperature=0,
                    best_of=2,
                    use_beam_search=True,
                ),
                block_tables={0: [1]},
            ))

    _, _, input_metadata = worker._prepare_inputs(seq_group_metadata_list)
    sampler(embedding=None,
            hidden_states=input_tensor,
            input_metadata=input_metadata)
    # no assertion here as I am not sure how to determine whether
    # the outputs are expected - in other words, this just tests
    # whether there are no exceptions in the sampler
    # when handling an all-beam search case.


@pytest.mark.parametrize("seed", RANDOM_SEEDS)
def test_sampler_mixed(seed: int):
    set_random_seed(seed)
    batch_size = random.randint(1, 256)
    input_tensor, fake_logits, sampler, worker = _prepare_test(batch_size)

    seq_group_metadata_list = []
    expected_tokens = []
    for i in range(batch_size):
        n = 1
        sampling_type = random.randint(0, 2)
        if sampling_type == 0:
            sampling_params = SamplingParams(temperature=0)
        elif sampling_type == 1:
            n = random.randint(1, 10)
            sampling_params = SamplingParams(
                temperature=random.random() + 0.1,
                top_p=min(random.random() + 0.1, 1),
                top_k=random.randint(0, 10) or -1,
                n=n,
                presence_penalty=random.randint(0, 1),
            )
        else:
            sampling_params = SamplingParams(temperature=0,
                                             use_beam_search=True,
                                             best_of=2)
        for idx in range(n):
            fake_logits[i, i + idx] = 1e2
            expected_tokens.append(i + idx)
        seq_group_metadata_list.append(
            SequenceGroupMetadata(
                request_id=f"test_{i}",
                is_prompt=True,
                seq_data={0: SequenceData([1, 2, 3])},
                sampling_params=sampling_params,
                block_tables={0: [1]},
            ))

    _, _, input_metadata = worker._prepare_inputs(seq_group_metadata_list)
    sampler_output = sampler(embedding=None,
                             hidden_states=input_tensor,
                             input_metadata=input_metadata)
    for i, sequence_output in enumerate(sampler_output):
        if seq_group_metadata_list[i].sampling_params.use_beam_search:
            continue
        for nth_output in sequence_output.samples:
            assert nth_output.output_token in expected_tokens