test_attention.py 10.7 KB
Newer Older
huangwb's avatar
huangwb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import random
from typing import List, Optional, Tuple

import pytest
import torch
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask

from vllm import attention_ops
from vllm.utils import get_max_shared_memory_bytes

FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# This will change depending on the compute capability.
# - 512 as a buffer
MAX_SEQ_LEN = get_max_shared_memory_bytes() // FLOAT32_BYTES - 512
NUM_BLOCKS = 128  # Arbitrary values for testing
PARTITION_SIZE = 512

DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_GEN_SEQS = [7]  # Arbitrary values for testing
NUM_PREFILL_SEQS = [3]  # Arbitrary values for testing
NUM_HEADS = [(40, 40), (64, 8)]  # Arbitrary values for testing
HEAD_SIZES = [64, 80, 96, 112, 128, 256]
BLOCK_SIZES = [16, 32]
USE_ALIBI = [False, True]
SEEDS = [0]


def ref_masked_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    attn_weights = scale * torch.einsum("qhd,khd->hqk", query, key).float()
    if attn_mask is not None:
        attn_weights = attn_weights + attn_mask.float()
    attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
    out = torch.einsum("hqk,khd->qhd", attn_weights, value)
    return out


def ref_single_query_cached_kv_attention(
    output: torch.Tensor,
    query: torch.Tensor,
    num_queries_per_kv: int,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    block_tables: torch.Tensor,
    context_lens: torch.Tensor,
    scale: float,
    alibi_slopes: Optional[torch.Tensor],
) -> None:
    num_query_heads = query.shape[1]
    num_kv_heads = value_cache.shape[1]
    head_size = value_cache.shape[2]
    block_size = value_cache.shape[3]
    num_seqs = query.shape[0]

    block_tables = block_tables.cpu().tolist()
    context_lens = context_lens.cpu().tolist()
    for i in range(num_seqs):
        q = query[i].unsqueeze(0)
        block_table = block_tables[i]
        context_len = int(context_lens[i])

        keys = []
        values = []
        for j in range(context_len):
            block_number = int(block_table[j // block_size])
            block_offset = j % block_size

            k = key_cache[block_number, :, :, block_offset, :]
            k = k.reshape(num_kv_heads, head_size)
            keys.append(k)

            v = value_cache[block_number, :, :, block_offset]
            values.append(v)
        keys = torch.stack(keys, dim=0)
        values = torch.stack(values, dim=0)
        if num_queries_per_kv > 1:
            # Handle MQA and GQA
            keys = torch.repeat_interleave(keys, num_queries_per_kv, dim=1)
            values = torch.repeat_interleave(values, num_queries_per_kv, dim=1)

        alibi_bias = None
        if alibi_slopes is not None:
            # Create the ALiBi bias used in the paged attention kernel.
            position_ids = torch.arange(context_len, device="cuda").int()
            alibi_bias = (position_ids - context_len + 1).float()
            alibi_bias = alibi_slopes.view(-1, 1, 1) * alibi_bias.view(
                1, 1, -1)

        out = ref_masked_attention(q, keys, values, scale, alibi_bias)
        out = out.view(num_query_heads, head_size)
        output[i].copy_(out, non_blocking=True)


@pytest.mark.parametrize("version", ["v1", "v2"])
@pytest.mark.parametrize("num_seqs", NUM_GEN_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("use_alibi", USE_ALIBI)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
def test_paged_attention(
    kv_cache_factory,
    version: str,
    num_seqs: int,
    num_heads: Tuple[int, int],
    head_size: int,
    use_alibi: bool,
    block_size: int,
    dtype: torch.dtype,
    seed: int,
) -> None:
    random.seed(seed)
    torch.random.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    scale = float(1.0 / (head_size**0.5))
    num_query_heads, num_kv_heads = num_heads
    query = torch.empty(num_seqs,
                        num_query_heads,
                        head_size,
                        dtype=dtype,
                        device="cuda")
    query.uniform_(-scale, scale)

    assert num_query_heads % num_kv_heads == 0
    num_queries_per_kv = num_query_heads // num_kv_heads
    head_mapping = torch.repeat_interleave(
        torch.arange(num_kv_heads, dtype=torch.int32, device="cuda"),
        num_queries_per_kv)
    alibi_slopes = None
    if use_alibi:
        alibi_slopes = torch.randn(num_query_heads,
                                   dtype=torch.float,
                                   device="cuda")

    context_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
    context_lens[-1] = MAX_SEQ_LEN
    max_context_len = max(context_lens)
    context_lens = torch.tensor(context_lens, dtype=torch.int, device="cuda")

    # Create the block tables.
    max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
    block_tables = []
    for _ in range(num_seqs):
        block_table = [
            random.randint(0, NUM_BLOCKS - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
        block_tables.append(block_table)
    block_tables = torch.tensor(block_tables, dtype=torch.int, device="cuda")

    # Create the KV caches.
    key_caches, value_caches = kv_cache_factory(NUM_BLOCKS, block_size, 1,
                                                num_kv_heads, head_size, dtype,
                                                seed)
    key_cache, value_cache = key_caches[0], value_caches[0]

    # Call the paged attention kernel.
    output = torch.empty_like(query)
    if version == "v1":
        attention_ops.paged_attention_v1(
            output,
            query,
            key_cache,
            value_cache,
            head_mapping,
            scale,
            block_tables,
            context_lens,
            block_size,
            max_context_len,
            alibi_slopes,
        )
    elif version == "v2":
        num_partitions = ((max_context_len + PARTITION_SIZE - 1) //
                          PARTITION_SIZE)
        assert PARTITION_SIZE % block_size == 0
        num_seqs, num_heads, head_size = output.shape
        tmp_output = torch.empty(
            size=(num_seqs, num_heads, num_partitions, head_size),
            dtype=output.dtype,
            device=output.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_heads, num_partitions),
            dtype=torch.float32,
            device=output.device,
        )
        max_logits = torch.empty_like(exp_sums)
        attention_ops.paged_attention_v2(
            output,
            exp_sums,
            max_logits,
            tmp_output,
            query,
            key_cache,
            value_cache,
            head_mapping,
            scale,
            block_tables,
            context_lens,
            block_size,
            max_context_len,
            alibi_slopes,
        )
    else:
        assert False, f"Unknown version: {version}"

    # Run the reference implementation.
    ref_output = torch.empty_like(query)
    ref_single_query_cached_kv_attention(
        ref_output,
        query,
        num_queries_per_kv,
        key_cache,
        value_cache,
        block_tables,
        context_lens,
        scale,
        alibi_slopes,
    )

    # NOTE(woosuk): Due to the kernel-level differences in the two
    # implementations, there is a small numerical difference in the two
    # outputs. Thus, we use a relaxed tolerance for the test.
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)


def ref_multi_query_kv_attention(
    cu_seq_lens: List[int],
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: float,
    dtype: torch.dtype,
) -> torch.Tensor:
    num_seqs = len(cu_seq_lens) - 1
    ref_outputs = []
    for i in range(num_seqs):
        start_idx = cu_seq_lens[i]
        end_idx = cu_seq_lens[i + 1]
        seq_len = end_idx - start_idx

        # Create attention mask.
        attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype),
                               diagonal=1)
        attn_mask = attn_mask * torch.finfo(dtype).min
        attn_mask = attn_mask.to(dtype=dtype, device="cuda")

        ref_output = ref_masked_attention(
            query[start_idx:end_idx],
            key[start_idx:end_idx],
            value[start_idx:end_idx],
            scale,
            attn_mask=attn_mask,
        )
        ref_outputs.append(ref_output)
    ref_output = torch.cat(ref_outputs, dim=0)
    return ref_output


# TODO(woosuk): Add tests for USE_ALIBI=True.
@pytest.mark.parametrize("num_seqs", NUM_PREFILL_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_multi_query_kv_attention(
    num_seqs: int,
    num_heads: Tuple[int, int],
    head_size: int,
    dtype: torch.dtype,
    seed: int,
) -> None:
    random.seed(seed)
    torch.random.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    # MAX_SEQ_LEN sometimes causes OOM in the reference implementation.
    # As the xformers library is already tested with its own tests, we can use
    # a smaller MAX_SEQ_LEN here.
    max_len = min(MAX_SEQ_LEN, 4096)
    seq_lens = random.sample(range(1, max_len), num_seqs)
    num_tokens = sum(seq_lens)

    scale = float(1.0 / (head_size**0.5))
    num_query_heads, num_kv_heads = num_heads
    qkv = torch.empty(num_tokens,
                      num_query_heads + 2 * num_kv_heads,
                      head_size,
                      dtype=dtype,
                      device="cuda")
    qkv.uniform_(-scale, scale)
    query, key, value = qkv.split(
        [num_query_heads, num_kv_heads, num_kv_heads], dim=1)

    num_queries_per_kv = num_query_heads // num_kv_heads
    if num_queries_per_kv > 1:
        # Handle MQA and GQA
        key = torch.repeat_interleave(key, num_queries_per_kv, dim=1)
        value = torch.repeat_interleave(value, num_queries_per_kv, dim=1)
    attn_bias = BlockDiagonalCausalMask.from_seqlens(seq_lens)
    output = xops.memory_efficient_attention_forward(
        query.unsqueeze(0),
        key.unsqueeze(0),
        value.unsqueeze(0),
        attn_bias=attn_bias,
        p=0.0,
        scale=scale,
    )
    output = output.squeeze(0)

    cu_seq_lens = [0]
    for seq_len in seq_lens:
        cu_seq_lens.append(cu_seq_lens[-1] + seq_len)
    ref_output = ref_multi_query_kv_attention(
        cu_seq_lens,
        query,
        key,
        value,
        scale,
        dtype,
    )
    assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)