llm_engine_example.py 1.74 KB
Newer Older
huangwb's avatar
huangwb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import argparse

from vllm import EngineArgs, LLMEngine, SamplingParams


def main(args: argparse.Namespace):
    # Parse the CLI argument and initialize the engine.
    engine_args = EngineArgs.from_cli_args(args)
    engine = LLMEngine.from_engine_args(engine_args)

    # Test the following prompts.
    test_prompts = [
        ("A robot may not injure a human being",
         SamplingParams(temperature=0.0, logprobs=1, prompt_logprobs=1)),
        ("To be or not to be,",
         SamplingParams(temperature=0.8, top_k=5, presence_penalty=0.2)),
        ("What is the meaning of life?",
         SamplingParams(n=2,
                        best_of=5,
                        temperature=0.8,
                        top_p=0.95,
                        frequency_penalty=0.1)),
        ("It is only with the heart that one can see rightly",
         SamplingParams(n=3, best_of=3, use_beam_search=True,
                        temperature=0.0)),
    ]

    # Run the engine by calling `engine.step()` manually.
    request_id = 0
    while True:
        # To test continuous batching, we add one request at each step.
        if test_prompts:
            prompt, sampling_params = test_prompts.pop(0)
            engine.add_request(str(request_id), prompt, sampling_params)
            request_id += 1

        request_outputs = engine.step()
        for request_output in request_outputs:
            if request_output.finished:
                print(request_output)

        if not (engine.has_unfinished_requests() or test_prompts):
            break


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description='Demo on using the LLMEngine class directly')
    parser = EngineArgs.add_cli_args(parser)
    args = parser.parse_args()
    main(args)