baichuan.py 14.3 KB
Newer Older
huangwb's avatar
huangwb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only BaiChuan model compatible with HuggingFace weights.

The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
import math
from typing import List, Optional, Tuple

import torch
from torch import nn

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.attention import (PagedAttentionWithRoPE,
                                                  PagedAttentionWithALiBi)
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (
    convert_pyslice_to_tensor, hf_model_weights_iterator,
    load_padded_tensor_parallel_vocab, load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (VocabParallelEmbedding,
                                                       ColumnParallelLinear,
                                                       RowParallelLinear)
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig

KVCache = Tuple[torch.Tensor, torch.Tensor]


def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
    closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
    base = torch.tensor(
        2**(-(2**-(math.log2(closest_power_of_2) - 3))),
        dtype=torch.float32,
    )
    powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
    slopes = torch.pow(base, powers)

    if closest_power_of_2 != total_num_heads:
        extra_base = torch.tensor(
            2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
            dtype=torch.float32,
        )
        num_remaining_heads = min(closest_power_of_2,
                                  total_num_heads - closest_power_of_2)
        extra_powers = torch.arange(start=1,
                                    end=1 + 2 * num_remaining_heads,
                                    step=2,
                                    dtype=torch.int32)
        slopes = torch.cat(
            [slopes, torch.pow(extra_base, extra_powers)], dim=0)
    return slopes


class BaiChuanMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
    ):
        super().__init__()
        self.gate_up_proj = ColumnParallelLinear(
            hidden_size,
            2 * intermediate_size,
            bias=False,
            gather_output=False,
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            input_is_parallel=True,
        )
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class BaiChuanAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        position_embedding: str,
        rope_theta: float = 10000,
        max_position_embeddings: int = 8192,
    ):
        super().__init__()
        self.hidden_size = hidden_size
        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
        )
        self.total_num_heads = num_heads
        assert self.total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = (self.total_num_heads //
                          tensor_model_parallel_world_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.postion_embedding = position_embedding
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        # pylint: disable=invalid-name
        self.W_pack = ColumnParallelLinear(
            hidden_size,
            3 * hidden_size,
            bias=False,
            gather_output=False,
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            input_is_parallel=True,
        )
        # Create the alibi slopes and slice them.
        if self.postion_embedding == "ALIBI":
            tp_rank = get_tensor_model_parallel_rank()
            head_start = tp_rank * self.num_heads
            head_end = (tp_rank + 1) * self.num_heads
            alibi_slopes = _get_alibi_slopes(self.total_num_heads)
            alibi_slopes = alibi_slopes[head_start:head_end].tolist()

            scaling = self.head_dim**-0.5
            self.attn = PagedAttentionWithALiBi(self.num_heads, self.head_dim,
                                                scaling, alibi_slopes)
        else:
            self.scaling = self.head_dim**-0.5
            self.attn = PagedAttentionWithRoPE(
                self.num_heads,
                self.head_dim,
                self.scaling,
                rotary_dim=self.head_dim,
                base=self.rope_theta,
                max_position=self.max_position_embeddings)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        qkv, _ = self.W_pack(hidden_states)
        q, k, v = qkv.chunk(chunks=3, dim=-1)
        k_cache, v_cache = kv_cache
        if self.postion_embedding == "ALIBI":
            attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
                                    cache_event)
        else:
            attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
                                    input_metadata, cache_event)

        output, _ = self.o_proj(attn_output)
        return output


class BaiChuanDecoderLayer(nn.Module):

    def __init__(self, config: BaiChuanConfig, position_embedding: str):
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        max_position_embeddings = getattr(config, "max_position_embeddings",
                                          8192)
        self.self_attn = BaiChuanAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            position_embedding=position_embedding,
            rope_theta=rope_theta,
            max_position_embeddings=max_position_embeddings,
        )
        self.mlp = BaiChuanMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
        )
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        # Self Attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states


class BaiChuanModel(nn.Module):

    def __init__(self, config: BaiChuanConfig, position_embedding: str):
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        self.layers = nn.ModuleList([
            BaiChuanDecoderLayer(config, position_embedding)
            for _ in range(config.num_hidden_layers)
        ])
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> torch.Tensor:
        hidden_states = self.embed_tokens(input_ids)
        for i in range(len(self.layers)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.layers[i]
            hidden_states = layer(
                positions,
                hidden_states,
                kv_caches[i],
                input_metadata,
                cache_event,
            )
        hidden_states = self.norm(hidden_states)
        return hidden_states


class BaiChuanBaseForCausalLM(nn.Module):

    def __init__(self, config, position_embedding: str):
        super().__init__()
        self.config = config
        self.model = BaiChuanModel(config, position_embedding)
        self.lm_head = ColumnParallelLinear(
            config.hidden_size,
            config.vocab_size,
            bias=False,
            gather_output=False,
        )
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> SamplerOutput:
        hidden_states = self.model(input_ids, positions, kv_caches,
                                   input_metadata, cache_events)
        next_tokens = self.sampler(self.lm_head.weight, hidden_states,
                                   input_metadata)
        return next_tokens

    _column_parallel_weights = []
    _row_parallel_weights = ["o_proj.weight", "down_proj.weight"]

    def load_weights(self,
                     model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     load_format: str = "auto",
                     revision: Optional[str] = None):
        tp_world_size = get_tensor_model_parallel_world_size()
        tp_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()

        for name, loaded_weight in hf_model_weights_iterator(
                model_name_or_path, cache_dir, load_format, revision):
            if "rotary_emb.inv_freq" in name:
                continue

            loaded_weight = convert_pyslice_to_tensor(loaded_weight)

            if "W_pack" in name:
                total_num_heads = self.config.num_attention_heads
                hidden_size = self.config.hidden_size
                head_size = hidden_size // total_num_heads
                num_heads = total_num_heads // tp_world_size
                head_start = tp_rank * num_heads
                head_end = (tp_rank + 1) * num_heads

                loaded_weight = loaded_weight.view(3, total_num_heads,
                                                   head_size, hidden_size)
                loaded_weight = loaded_weight[:, head_start:head_end, :, :]
                loaded_weight = loaded_weight.reshape(-1, hidden_size)

            is_gate_up_weight = False
            for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
                if weight_name not in name:
                    continue
                param = state_dict[name.replace(weight_name, "gate_up_proj")]
                shard_size = param.shape[0] // 2
                loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
                                              (tp_rank + 1)]
                param_slice = param.data[shard_size * stride_id:shard_size *
                                         (stride_id + 1)]
                assert param_slice.shape == loaded_weight.shape
                param_slice.copy_(loaded_weight)
                is_gate_up_weight = True
                break
            if is_gate_up_weight:
                continue

            param = state_dict[name]

            if "embed_tokens" in name or "lm_head" in name:
                load_padded_tensor_parallel_vocab(param, loaded_weight,
                                                  tp_rank)
                continue

            load_tensor_parallel_weights(
                param,
                loaded_weight,
                name,
                self._column_parallel_weights,
                self._row_parallel_weights,
                tp_rank,
            )


class BaichuanForCausalLM(BaiChuanBaseForCausalLM):  # baichuan 13b

    def __init__(self, config):
        super().__init__(config, "ALIBI")


class BaiChuanForCausalLM(BaiChuanBaseForCausalLM):  # baichuan 7b

    def __init__(self, config):
        super().__init__(config, "ROPE")