test_pos_encoding.py 5.68 KB
Newer Older
huangwb's avatar
huangwb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from typing import Optional, Tuple

import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F

from vllm import pos_encoding_ops

IS_NEOX_STYLE = [True, False]
DTYPES = [torch.half, torch.bfloat16, torch.float]
HEAD_SIZES = [64, 80, 96, 112, 128, 256]
ROTARY_DIMS = [None, 32]  # None means rotary dim == head size
NUM_HEADS = [7, 12, 40, 52]  # Arbitrary values for testing
NUM_TOKENS = [11, 83, 2048]  # Arbitrary values for testing
SEEDS = [0]


def rotate_neox(x: torch.Tensor) -> torch.Tensor:
    x1 = x[..., :x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=-1)


def rotate_gptj(x: torch.Tensor) -> torch.Tensor:
    x1 = x[..., ::2]
    x2 = x[..., 1::2]
    x = torch.stack((-x2, x1), dim=-1)
    return x.flatten(-2)


def apply_rope(
    q: torch.Tensor,
    k: torch.Tensor,
    cos: torch.Tensor,
    sin: torch.Tensor,
    is_neox_style: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
    rotate_fn = rotate_neox if is_neox_style else rotate_gptj
    q_embed = (q * cos) + (rotate_fn(q) * sin)
    k_embed = (k * cos) + (rotate_fn(k) * sin)
    return q_embed, k_embed


class RefRotaryEmbedding(nn.Module):
    """Reference implementation of rotary embedding."""

    def __init__(
        self,
        dim: int,
        is_neox_style: bool,
        max_position_embeddings: int = 8192,
        base: int = 10000,
    ) -> None:
        super().__init__()
        self.rotary_dim = dim
        self.is_neox_style = is_neox_style
        self.max_position_embeddings = max_position_embeddings

        # Create cos and sin embeddings.
        inv_freq = 1.0 / (base**(torch.arange(0, dim, 2) / dim))
        t = torch.arange(max_position_embeddings).float()
        freqs = torch.einsum("i,j->ij", t, inv_freq.float())
        if is_neox_style:
            emb = torch.cat((freqs, freqs), dim=-1)
        else:
            emb = torch.repeat_interleave(freqs, 2, -1)
        cos = emb.cos().to(dtype=inv_freq.dtype)
        sin = emb.sin().to(dtype=inv_freq.dtype)
        self.register_buffer("cos_cached", cos, persistent=False)
        self.register_buffer("sin_cached", sin, persistent=False)

    def forward(
        self,
        positions: torch.Tensor,  # [num_tokens]
        query: torch.Tensor,  # [num_tokens, num_heads, head_size]
        key: torch.Tensor,  # [num_tokens, num_heads, head_size]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        query_rot = query[..., :self.rotary_dim]
        query_pass = query[..., self.rotary_dim:]
        key_rot = key[..., :self.rotary_dim]
        key_pass = key[..., self.rotary_dim:]

        query_rot = query_rot.transpose(0, 1)
        key_rot = key_rot.transpose(0, 1)
        cos = F.embedding(positions, self.cos_cached)
        sin = F.embedding(positions, self.sin_cached)

        query_rot, key_rot = apply_rope(query_rot, key_rot, cos, sin,
                                        self.is_neox_style)
        query_rot = query_rot.transpose(0, 1).contiguous()
        key_rot = key_rot.transpose(0, 1).contiguous()

        query = torch.cat((query_rot, query_pass), dim=-1)
        key = torch.cat((key_rot, key_pass), dim=-1)

        # Output query/key shape: [num_tokens, num_tokens, head_size]
        return query, key


@pytest.mark.parametrize("is_neox_style", IS_NEOX_STYLE)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("rotary_dim", ROTARY_DIMS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_rotary_embedding(
    is_neox_style: bool,
    num_tokens: int,
    num_heads: int,
    head_size: int,
    rotary_dim: Optional[int],
    dtype: torch.dtype,
    seed: int,
    max_position: int = 8192,
    base: int = 10000,
) -> None:
    if rotary_dim is None:
        rotary_dim = head_size
    torch.random.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    positions = torch.randint(0, max_position, (num_tokens, ), device="cuda")
    query = torch.randn(num_tokens,
                        num_heads * head_size,
                        dtype=dtype,
                        device="cuda")
    key = torch.randn(num_tokens,
                      num_heads * head_size,
                      dtype=dtype,
                      device="cuda")

    # Create the rotary embedding.
    inv_freq = 1.0 / (base**(
        torch.arange(0, rotary_dim, 2, dtype=torch.float) / rotary_dim))
    t = torch.arange(max_position).float()
    freqs = torch.einsum("i,j -> ij", t, inv_freq)
    cos = freqs.cos()
    sin = freqs.sin()
    cos_sin_cache = torch.cat((cos, sin), dim=-1)
    cos_sin_cache = cos_sin_cache.to(dtype=dtype, device="cuda")

    # Run the kernel. The kernel is in-place, so we need to clone the inputs.
    out_query = query.clone()
    out_key = key.clone()
    pos_encoding_ops.rotary_embedding(
        positions,
        out_query,
        out_key,
        head_size,
        cos_sin_cache,
        is_neox_style,
    )

    # Run the reference implementation.
    ref_rotary_embedding = RefRotaryEmbedding(
        dim=rotary_dim,
        is_neox_style=is_neox_style,
        max_position_embeddings=max_position,
        base=base,
    ).to(dtype=dtype, device="cuda")
    ref_query, ref_key = ref_rotary_embedding(
        positions,
        query.view(num_tokens, num_heads, head_size),
        key.view(num_tokens, num_heads, head_size),
    )
    ref_query = ref_query.view(num_tokens, num_heads * head_size)
    ref_key = ref_key.view(num_tokens, num_heads * head_size)

    # Compare the results.
    assert torch.allclose(out_query, ref_query, atol=1e-5, rtol=1e-5)
    assert torch.allclose(out_key, ref_key, atol=1e-5, rtol=1e-5)