gptq_marlin.py 6.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from dataclasses import dataclass
from typing import List, Optional

import torch
import torch.nn as nn

from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.weights import Weights
from text_generation_server.layers.marlin.gptq import (
    GPTQMarlinWeight,
    GPTQMarlinWeightsLoader,
)

if SYSTEM == "cuda":
    from moe_kernels.fused_marlin_moe import fused_marlin_moe
else:
    fused_marlin_moe = None


try:
    major, _minor = torch.cuda.get_device_capability()
    has_sm_8_0 = major >= 8
except Exception:
    has_sm_8_0 = False


def can_use_marlin_moe_gemm(
    *,
    quant_method: str,
    quantize: str,
    sym: bool,
):
    return (
        SYSTEM == "cuda"
        and fused_marlin_moe is not None
        and has_sm_8_0
37
38
39
40
        and quantize in {"awq", "gptq"}
        and quant_method in {"awq", "gptq"}
        # We only support asymmetric quantization for AWQ.
        and (sym or quant_method == "awq")
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    )


@dataclass
class GPTQMarlinMoEWeight:
    qweight: torch.Tensor
    qzeros: torch.Tensor
    scales: torch.Tensor
    g_idx: torch.Tensor
    perm: torch.Tensor
    is_full_k: bool


class GPTQMarlinSparseMoELayer(nn.Module):
    """
    MoE layer that uses a fused GPTQ-Marlin kernel.
    """

    def __init__(
        self,
        *,
        n_expert_group: Optional[int],
        n_experts: int,
        prefix: str,
        renormalize: bool,
        topk: int,
        topk_group: Optional[int],
        weights: Weights,
        gate_proj_name: str = "gate_proj",
        up_proj_name: str = "up_proj",
        down_proj_name: str = "down_proj",
    ):
        super().__init__()

        if not (
76
77
78
79
80
81
            isinstance(weights.loader, GPTQMarlinWeightsLoader)
            and can_use_marlin_moe_gemm(
                quant_method=weights.loader.quant_method,
                quantize=weights.loader.quantize,
                sym=weights.loader.sym,
            )
82
83
        ):
            raise ValueError(
84
                f"Unsupported weights loader: {type(weights.loader)}, only GPTQMarlinWeightsLoader with AWQ and symmetric GPTQ quantization is supported"
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            )

        assert (n_expert_group is None) == (
            topk_group is None
        ), "n_expert_group and topk_group must both be None or have some value"

        self.n_expert_group = n_expert_group
        self.topk = topk
        self.topk_group = topk_group
        self.renormalize = renormalize

        self.gate_up_proj = _load_expert_multi_weights_col(
            prefix=prefix,
            n_experts=n_experts,
            names=[gate_proj_name, up_proj_name],
            weights=weights,
        )

        self.down_proj = _load_expert_weights_row(
            prefix=prefix, n_experts=n_experts, name=down_proj_name, weights=weights
        )

        self.bits = weights.loader.bits

    def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor:
        return fused_marlin_moe(
111
            hidden_states=x,
112
113
114
115
            w1=self.gate_up_proj.qweight,
            w2=self.down_proj.qweight,
            w1_scale=self.gate_up_proj.scales,
            w2_scale=self.down_proj.scales,
116
117
118
119
120
121
122
123
124
125
126
127
128
            w1_zeros=(
                self.gate_up_proj.qzeros
                if self.gate_up_proj.qzeros.numel() > 0
                else None
            ),
            w2_zeros=(
                self.down_proj.qzeros if self.down_proj.qzeros.numel() > 0 else None
            ),
            g_idx1=self.gate_up_proj.g_idx,
            g_idx2=self.down_proj.g_idx,
            sort_indices1=self.gate_up_proj.perm,
            sort_indices2=self.down_proj.perm,
            is_k_full=self.gate_up_proj.is_full_k or self.down_proj.is_full_k,
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
            gating_output=gating_output,
            topk=self.topk,
            renormalize=self.renormalize,
            use_grouped_topk=self.n_expert_group is not None,
            num_expert_group=self.n_expert_group,
            topk_group=self.topk_group,
            num_bits=self.bits,
        )


def _load_expert_multi_weights_col(
    *,
    prefix: str,
    n_experts: int,
    names: List[str],
    weights: Weights,
) -> GPTQMarlinMoEWeight:
    moe_weight = None
    for i in range(n_experts):
        weight = weights.get_multi_weights_col(
            [f"{prefix}.{i}.{name}" for name in names], 0
        )
        assert isinstance(weight, GPTQMarlinWeight)
        moe_weight = _pack_weight(
            n_experts=n_experts, expert=i, weight=weight, moe_weight=moe_weight
        )
    assert moe_weight is not None
    return moe_weight


def _load_expert_weights_row(
    *,
    prefix: str,
    n_experts: int,
    name: str,
    weights: Weights,
) -> GPTQMarlinMoEWeight:
    moe_weight = None
    for i in range(n_experts):
        weight = weights.get_weights_row(
            f"{prefix}.{i}.{name}",
        )
        assert isinstance(weight, GPTQMarlinWeight)
        moe_weight = _pack_weight(
            n_experts=n_experts, expert=i, weight=weight, moe_weight=moe_weight
        )
    assert moe_weight is not None
    return moe_weight


def _pack_weight(
    *,
    n_experts: int,
    expert: int,
    moe_weight: Optional[GPTQMarlinMoEWeight],
    weight: GPTQMarlinWeight,
) -> GPTQMarlinMoEWeight:
    if moe_weight is None:
        qweight = torch.empty(
            (n_experts,) + weight.qweight.shape,
            dtype=weight.qweight.dtype,
            device=weight.qweight.device,
        )
        qzeros = torch.empty(
            (n_experts,) + weight.qzeros.shape,
            dtype=weight.qzeros.dtype,
            device=weight.qzeros.device,
        )
        scales = torch.empty(
            (n_experts,) + weight.scales.shape,
            dtype=weight.scales.dtype,
            device=weight.scales.device,
        )
        g_idx = torch.empty(
            (n_experts,) + weight.g_idx.shape,
            dtype=weight.g_idx.dtype,
            device=weight.g_idx.device,
        )
        perm = torch.empty(
            (n_experts,) + weight.perm.shape,
            dtype=weight.perm.dtype,
            device=weight.perm.device,
        )

        moe_weight = GPTQMarlinMoEWeight(
            qweight=qweight,
            qzeros=qzeros,
            scales=scales,
            g_idx=g_idx,
            perm=perm,
            is_full_k=weight.is_full_k,
        )

    moe_weight.qweight[expert] = weight.qweight
    moe_weight.qzeros[expert] = weight.qzeros
    moe_weight.scales[expert] = weight.scales
    moe_weight.g_idx[expert] = weight.g_idx
    moe_weight.perm[expert] = weight.perm

    return moe_weight