seq2seq_lm.py 23 KB
Newer Older
1
2
3
import torch

from dataclasses import dataclass
4
from opentelemetry import trace
5
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase
6
7
from typing import Optional, Tuple, List, Type

8
9
10
11
12
13
14
15
16
from text_generation_server.models import Model
from text_generation_server.models.types import (
    GeneratedText,
    Batch,
    Generation,
    PrefillTokens,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
17

18
19
tracer = trace.get_tracer(__name__)

20
21

@dataclass
22
class Seq2SeqLMBatch(Batch):
23
24
25
    batch_id: int
    requests: List[generate_pb2.Request]

OlivierDehaene's avatar
OlivierDehaene committed
26
    # Encoder values
27
28
29
    input_ids: torch.Tensor
    attention_mask: torch.Tensor

OlivierDehaene's avatar
OlivierDehaene committed
30
    # Decoder values
31
32
33
34
    decoder_input_ids: torch.Tensor
    decoder_attention_mask: Optional[torch.Tensor]
    encoder_last_hidden_state: Optional[torch.Tensor]

OlivierDehaene's avatar
OlivierDehaene committed
35
    # Seq2SeqLM keeps track of both encoder and decoder attention keys and values
36
37
    past_key_values: Optional[List[Tuple]]

OlivierDehaene's avatar
OlivierDehaene committed
38
    # Lengths of all generations present in the batch
39
40
    input_lengths: List[int]
    decoder_input_lengths: List[int]
41
42
    offsets: List[Optional[int]]
    token_offsets: List[Optional[int]]
43

OlivierDehaene's avatar
OlivierDehaene committed
44
    # Generation helpers
45
46
47
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

OlivierDehaene's avatar
OlivierDehaene committed
48
    # Metadata used for padding
49
50
51
    size: int
    max_input_length: int
    max_decoder_input_length: int
52
    padding_right_offset: int
53

54
    def to_pb(self) -> generate_pb2.Batch:
55
        """Convert a Seq2SeqLMBatch to a text_generation_server.v1.Batch protobuf"""
56
57
58
59
60
61
62
63
        return generate_pb2.Batch(
            id=self.batch_id,
            requests=self.requests,
            size=self.size,
        )

    @classmethod
    def from_pb(
64
65
66
67
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
68
    ) -> "Seq2SeqLMBatch":
69
        """Convert a text_generation_server.v1.Batch protobuf to a Seq2SeqLMBatch"""
70
71
72
73
74
75
        inputs = []
        next_token_choosers = []
        stopping_criterias = []

        decoder_input_ids = []
        decoder_input_lengths = []
76
77
        offsets = []
        token_offsets = []
78
79

        # Parse batch
80
        max_truncation = 0
81
        padding_right_offset = 0
82
83
        for r in pb.requests:
            inputs.append(r.inputs)
OlivierDehaene's avatar
OlivierDehaene committed
84
            # Decoder sequence only contains the bos_token
85
86
            decoder_input_ids.append(tokenizer.bos_token_id)
            decoder_input_lengths.append(1)
87
88
            offsets.append(None)
            token_offsets.append(None)
89
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
90
91
92
93
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
94
            max_truncation = max(max_truncation, r.truncate)
95
96
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
97
98
            )

OlivierDehaene's avatar
OlivierDehaene committed
99
        # Tokenize batch
100
        tokenized_inputs = tokenizer(
101
102
103
            inputs,
            return_tensors="pt",
            padding=True,
104
            return_token_type_ids=False,
105
106
            truncation=True,
            max_length=max_truncation,
107
        ).to(device)
108
109
110
111

        input_lengths = tokenized_inputs["attention_mask"].sum(1)
        max_input_length = input_lengths.max()

OlivierDehaene's avatar
OlivierDehaene committed
112
        # Convert decoder_input_ids to torch tensor of size [batch_size, 1]
113
        decoder_input_ids = torch.tensor(decoder_input_ids, device=device).unsqueeze(-1)
114
115
116
117
118
119
120
121
122
123

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=None,
            encoder_last_hidden_state=None,
            past_key_values=None,
124
            input_lengths=input_lengths.tolist(),
125
            decoder_input_lengths=decoder_input_lengths,
126
127
            offsets=offsets,
            token_offsets=token_offsets,
128
129
130
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=len(pb.requests),
131
            max_input_length=max_input_length.item(),
132
            max_decoder_input_length=1,
133
            padding_right_offset=padding_right_offset,
134
135
136
        )

    @classmethod
137
    @tracer.start_as_current_span("concatenate")
138
    def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
139
140
        """Concatenate multiple batches together by padding internal torch tensors"""

141
        # Used for padding
142
143
144
145
146
147
148
149
150
151
152
        total_batch_size = 0
        max_input_length = 0
        max_decoder_input_length = 0
        padding_right_offset = 0
        for batch in batches:
            total_batch_size += batch.size
            max_input_length = max(max_input_length, batch.max_input_length)
            max_decoder_input_length = max(
                max_decoder_input_length, batch.max_decoder_input_length
            )
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
153
154
155
156
157

        # Batch attributes
        requests = []
        input_lengths = []
        decoder_input_lengths = []
158
159
        offsets = []
        token_offsets = []
160
161
162
        next_token_choosers = []
        stopping_criterias = []

OlivierDehaene's avatar
OlivierDehaene committed
163
        # Batch tensors
164
165
166
167
168
169
170
171
172
        attention_mask = None
        decoder_input_ids = None
        decoder_attention_mask = None
        encoder_last_hidden_state = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
OlivierDehaene's avatar
OlivierDehaene committed
173

174
        for i, batch in enumerate(batches):
OlivierDehaene's avatar
OlivierDehaene committed
175
            # Extend all list attributes
176
177
178
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            decoder_input_lengths.extend(batch.decoder_input_lengths)
179
180
            offsets.extend(batch.offsets)
            token_offsets.extend(batch.token_offsets)
181
182
183
184
185
186
187
188
189
190
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Slicing end index for this batch
            end_index = start_index + batch.size

            # We only concatenate batches that did at least one step
            if batch.encoder_last_hidden_state is None:
                raise ValueError("Batch encoder_last_hidden_state cannot be None")

OlivierDehaene's avatar
OlivierDehaene committed
191
            # Create padded tensor
192
            if attention_mask is None:
193
                attention_mask = batch.attention_mask.new_zeros(
194
195
                    (total_batch_size, max_input_length),
                )
OlivierDehaene's avatar
OlivierDehaene committed
196
            # Copy to correct indices
197
198
199
200
            attention_mask[
                start_index:end_index, -batch.max_input_length :
            ] = batch.attention_mask[:, -batch.max_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
201
            # Create padded tensor
202
            if decoder_input_ids is None:
203
                decoder_input_ids = batch.decoder_input_ids.new_zeros(
204
205
                    (total_batch_size, max_decoder_input_length),
                )
OlivierDehaene's avatar
OlivierDehaene committed
206
            # Copy to correct indices
207
208
209
210
            decoder_input_ids[
                start_index:end_index, -batch.max_decoder_input_length :
            ] = batch.decoder_input_ids[:, -batch.max_decoder_input_length :]

OlivierDehaene's avatar
OlivierDehaene committed
211
            # Create padded tensor
212
            if decoder_attention_mask is None:
213
214
                # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here
                decoder_attention_mask = batch.attention_mask.new_zeros(
215
                    (total_batch_size, max_decoder_input_length + padding_right_offset),
216
                )
OlivierDehaene's avatar
OlivierDehaene committed
217
218
            # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
            # this batch. All generations are of length `batch.max_decoder_input_length`.
219
            left_offset = max_decoder_input_length - batch.max_decoder_input_length
220
221
            if batch.decoder_attention_mask is None:
                decoder_attention_mask[
222
223
                    start_index:end_index,
                    left_offset:-padding_right_offset,
224
                ] = 1
OlivierDehaene's avatar
OlivierDehaene committed
225
            # If it exists, we need to index
226
            else:
227
228
                batch_left_offset = (
                    batch.decoder_attention_mask.shape[1]
229
230
                    - batch.max_decoder_input_length
                    - batch.padding_right_offset
231
                )
232
                decoder_attention_mask[
233
234
235
236
237
238
                    start_index:end_index,
                    left_offset:-padding_right_offset,
                ] = batch.decoder_attention_mask[
                    :,
                    batch_left_offset : -batch.padding_right_offset,
                ]
239

OlivierDehaene's avatar
OlivierDehaene committed
240
            # Create padded tensor
241
            if encoder_last_hidden_state is None:
242
                encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros(
243
244
245
246
247
248
249
                    (
                        total_batch_size,
                        max_input_length,
                        batch.encoder_last_hidden_state.shape[-1],
                    ),
                )

OlivierDehaene's avatar
OlivierDehaene committed
250
            # Copy to correct indices
251
            encoder_last_hidden_state[
252
253
                start_index:end_index, -batch.max_input_length :, :
            ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :]
254

OlivierDehaene's avatar
OlivierDehaene committed
255
            # Iterate over attention layers
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
            for j, past in enumerate(batch.past_key_values):
                _, num_heads, _, head_dim = past[0].shape

                # This will run only once per layer
                if j == len(past_key_values):
                    past_key_values.append([])

                # Decoder past
                for k, t in enumerate(past[:2]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        (max_decoder_input_length - 1),
                        head_dim,
                    )

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if k == len(past_key_values[j]):
275
                        past_key_values[j].append(t.new_zeros(padded_t_shape))
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

                    # We slice the past keys and values to remove the padding from previous batches
                    past_key_values[j][k][
                        start_index:end_index,
                        :,
                        -(batch.max_decoder_input_length - 1) :,
                        :,
                    ] = t[:, :, -(batch.max_decoder_input_length - 1) :, :]

                # encoder past
                for k, t in enumerate(past[2:]):
                    padded_t_shape = (
                        total_batch_size,
                        num_heads,
                        max_input_length,
                        head_dim,
                    )

                    idx = k + 2

                    # Initialize tensors
                    # This will run only once per layer and per past tensor
                    if idx == len(past_key_values[j]):
299
                        past_key_values[j].append(t.new_zeros(padded_t_shape))
300
301
302
303
304
305
306
307
308
309

                    past_key_values[j][idx][
                        start_index:end_index, :, -batch.max_input_length :, :
                    ] = t[:, :, -batch.max_input_length :, :]

            start_index += batch.size

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
310
            input_ids=None,
311
312
313
314
315
316
317
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_last_hidden_state=encoder_last_hidden_state,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
318
319
            offsets=offsets,
            token_offsets=token_offsets,
320
321
322
323
324
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=total_batch_size,
            max_input_length=max_input_length,
            max_decoder_input_length=max_decoder_input_length,
325
            padding_right_offset=padding_right_offset,
326
327
        )

328
329
330
    def __len__(self):
        return len(self.requests)

331
332

class Seq2SeqLM(Model):
333
334
335
336
337
338
339
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: bool = False,
        decode_buffer: int = 3,
    ):
340
341
342
343
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
        else:
344
345
346
            if quantize:
                raise ValueError("quantization is not available on CPU")

347
348
349
350
            device = torch.device("cpu")
            dtype = torch.float32

        self.model = AutoModelForSeq2SeqLM.from_pretrained(
351
            model_id,
352
            revision=revision,
353
354
            torch_dtype=dtype,
            device_map="auto" if torch.cuda.is_available() else None,
OlivierDehaene's avatar
OlivierDehaene committed
355
            load_in_8bit=quantize,
356
        ).eval()
357
        tokenizer = AutoTokenizer.from_pretrained(
358
            model_id, revision=revision, padding_side="left", truncation_side="left"
359
        )
360
361
362
        tokenizer.bos_token_id = self.model.config.decoder_start_token_id

        super(Seq2SeqLM, self).__init__(
363
            tokenizer=tokenizer, device=device, decode_buffer=decode_buffer
364
365
366
367
368
369
        )

    @property
    def batch_type(self) -> Type[Seq2SeqLMBatch]:
        return Seq2SeqLMBatch

370
    def decode(self, decoder_ids: List[int]) -> str:
371
372
373
        return self.tokenizer.decode(
            decoder_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )
374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    def forward(
        self,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask: Optional,
        encoder_last_hidden_state: Optional,
        past_key_values: Optional = None,
    ) -> Tuple[
        torch.Tensor,
        torch.Tensor,
        List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
    ]:
        # Model Forward
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
OlivierDehaene's avatar
OlivierDehaene committed
394
            encoder_outputs=encoder_last_hidden_state,
395
396
397
398
399
400
401
402
403
            past_key_values=past_key_values,
            use_cache=True,
        )
        return (
            outputs.logits,
            outputs.encoder_last_hidden_state,
            outputs.past_key_values,
        )

404
    @tracer.start_as_current_span("generate_token")
405
406
    def generate_token(
        self, batch: Seq2SeqLMBatch
407
    ) -> Tuple[List[Generation], Optional[Seq2SeqLMBatch]]:
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        if batch.decoder_attention_mask is not None:
            # slice to the correct shape
            decoder_attention_mask = batch.decoder_attention_mask[
                :, : -batch.padding_right_offset
            ]
        else:
            decoder_attention_mask = None

        # check if first forward or not
        if batch.past_key_values is not None:
            # Only take the last token
            decoder_input_ids = batch.decoder_input_ids[:, -1].unsqueeze(-1)
        else:
            decoder_input_ids = batch.decoder_input_ids

        # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
        # internally...
        if batch.encoder_last_hidden_state is not None:
            encoder_last_hidden_state = [batch.encoder_last_hidden_state]
        else:
            encoder_last_hidden_state = batch.encoder_last_hidden_state

430
431
432
        logits, encoder_last_hidden_state, past = self.forward(
            batch.input_ids,
            batch.attention_mask,
433
434
435
            decoder_input_ids,
            decoder_attention_mask,
            encoder_last_hidden_state,
436
            batch.past_key_values,
437
438
439
440
441
        )

        # List of indices to cache
        next_batch_keep_indices = []

OlivierDehaene's avatar
OlivierDehaene committed
442
        # New values for next forward
443
        next_batch_input_lengths = []
444
445
        next_batch_offsets = []
        next_batch_token_offsets = []
446
447
448
        next_batch_decoder_input_ids = []
        next_batch_decoder_input_lengths = []

OlivierDehaene's avatar
OlivierDehaene committed
449
        # Metadata
450
451
452
453
454
        next_batch_size = 0
        next_batch_max_input_length = 0
        next_batch_max_decoder_input_length = 0

        # Finished requests
455
        generations: List[Generation] = []
456
457
458
459
460

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
461
462
            batch.offsets,
            batch.token_offsets,
463
464
465
466
467
468
469
470
471
472
473
            batch.decoder_input_lengths,
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.decoder_input_ids,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
474
475
            offset,
            token_offset,
476
477
478
479
            decoder_input_length,
            logits,
            next_token_chooser,
            stopping_criteria,
OlivierDehaene's avatar
OlivierDehaene committed
480
            decoder_input_ids,
481
482
        ) in enumerate(iterator):
            # Select next token
483
484
485
            next_token_id, logprobs = next_token_chooser(
                decoder_input_ids.view(1, -1), logits
            )
486
487

            # Append next token to decoder tokens
488
            decoder_input_ids = torch.cat([decoder_input_ids, next_token_id.squeeze(1)])
OlivierDehaene's avatar
OlivierDehaene committed
489
490
            new_decoder_input_length = decoder_input_length + 1

491
492
493
            # Generated token
            next_token_logprob = logprobs[-1, next_token_id]
            next_token_id_squeezed = next_token_id.squeeze()
494
495
            next_token_text, offset, token_offset = self.decode_token(
                decoder_input_ids, offset, token_offset
496
            )
497
498

            # Evaluate stopping criteria
499
500
            stop, reason = stopping_criteria(next_token_id, next_token_text)

501
            if stop:
OlivierDehaene's avatar
OlivierDehaene committed
502
503
                # Slice with decoder_input_length to remove padding
                # Decode all tokens
504
                output_text = self.decode(decoder_input_ids[-decoder_input_length:])
505
506
507
508
509
510
511

                # Get seed
                if isinstance(next_token_chooser.choice, Sampling):
                    seed = next_token_chooser.choice.seed
                else:
                    seed = None

512
513
                generated_text = GeneratedText(
                    output_text, stopping_criteria.current_tokens, reason, seed
514
515
                )
            else:
516
517
                # Keep request in the batch
                generated_text = None
518
                next_batch_keep_indices.append(i)
OlivierDehaene's avatar
OlivierDehaene committed
519
                next_batch_decoder_input_ids.append(decoder_input_ids.unsqueeze(0))
520
521
522
                next_batch_size += 1
                next_batch_input_lengths.append(input_length)
                next_batch_decoder_input_lengths.append(new_decoder_input_length)
523
524
                next_batch_offsets.append(offset)
                next_batch_token_offsets.append(token_offset)
525
526
527
528
529
530
531
                next_batch_max_input_length = max(
                    next_batch_max_input_length, input_length
                )
                next_batch_max_decoder_input_length = max(
                    next_batch_max_decoder_input_length, new_decoder_input_length
                )

532
533
534
            # Prefill
            if stopping_criteria.current_tokens == 1:
                prefill_tokens = PrefillTokens(
535
536
537
                    [self.tokenizer.bos_token_id],
                    [float("nan")],
                    [self.tokenizer.bos_token],
538
539
540
541
542
543
544
545
546
547
                )
            else:
                prefill_tokens = None

            generation = Generation(
                request.id,
                prefill_tokens,
                next_token_id_squeezed,
                next_token_logprob,
                next_token_text,
548
                next_token_id_squeezed.item() in self.all_special_ids,
549
550
551
552
553
                generated_text,
            )

            generations.append(generation)

554
555
        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
556
            return generations, None
557
558

        next_batch_decoder_input_ids = torch.cat(next_batch_decoder_input_ids)
OlivierDehaene's avatar
OlivierDehaene committed
559
560
        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
561
        if len(next_batch_keep_indices) != len(batch):
562
            # Apply indices to decoder_attention mask, past key values and other items that need to be cached
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
            next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
            if batch.decoder_attention_mask is not None:
                next_batch_decoder_attention_mask = batch.decoder_attention_mask[
                    next_batch_keep_indices
                ]
            else:
                next_batch_decoder_attention_mask = None

            next_batch_encoder_last_hidden_state = encoder_last_hidden_state[
                next_batch_keep_indices
            ]

            next_batch_past_key_values = [
                [t[next_batch_keep_indices] for t in layer] for layer in past
            ]
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
            next_batch_attention_mask = batch.attention_mask
            next_batch_decoder_attention_mask = batch.decoder_attention_mask
            next_batch_encoder_last_hidden_state = encoder_last_hidden_state
            next_batch_past_key_values = past

            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

595
        # Update decoder_attention_mask as we added a new token to input_ids
596
        if next_batch_decoder_attention_mask is not None:
597
            next_batch_decoder_attention_mask[:, -batch.padding_right_offset] = 1
598
599
600
601

        next_batch = Seq2SeqLMBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
602
            input_ids=None,
603
604
605
606
607
608
609
            attention_mask=next_batch_attention_mask,
            decoder_input_ids=next_batch_decoder_input_ids,
            decoder_attention_mask=next_batch_decoder_attention_mask,
            encoder_last_hidden_state=next_batch_encoder_last_hidden_state,
            past_key_values=next_batch_past_key_values,
            input_lengths=next_batch_input_lengths,
            decoder_input_lengths=next_batch_decoder_input_lengths,
610
611
            offsets=next_batch_offsets,
            token_offsets=next_batch_token_offsets,
612
613
614
615
616
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
            size=next_batch_size,
            max_input_length=next_batch_max_input_length,
            max_decoder_input_length=next_batch_max_decoder_input_length,
617
            padding_right_offset=batch.padding_right_offset - 1,
618
        )
619
        return generations, next_batch