vertex.rs 6.01 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
use crate::infer::Infer;
use crate::server::{generate_internal, ComputeType};
3
use crate::{ChatRequest, ErrorResponse, GenerateParameters, GenerateRequest};
Nicolas Patry's avatar
Nicolas Patry committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
use axum::extract::Extension;
use axum::http::{HeaderMap, StatusCode};
use axum::response::{IntoResponse, Response};
use axum::Json;
use serde::{Deserialize, Serialize};
use tracing::instrument;
use utoipa::ToSchema;

#[derive(Clone, Deserialize, ToSchema)]
#[cfg_attr(test, derive(Debug, PartialEq))]
pub(crate) struct GenerateVertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Clone, Deserialize, ToSchema)]
#[cfg_attr(test, derive(Debug, PartialEq))]
#[serde(untagged)]
pub(crate) enum VertexInstance {
    Generate(GenerateVertexInstance),
26
    Chat(ChatRequest),
Nicolas Patry's avatar
Nicolas Patry committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
}

#[derive(Deserialize, ToSchema)]
#[cfg_attr(test, derive(Debug, PartialEq))]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

/// Generate tokens from Vertex request
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
pub(crate) async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    let span = tracing::Span::current();
    metrics::counter!("tgi_request_count").increment(1);

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Prepare futures for all instances
    let mut futures = Vec::with_capacity(req.instances.len());

    for instance in req.instances.into_iter() {
        let generate_request = match instance {
            VertexInstance::Generate(instance) => GenerateRequest {
                inputs: instance.inputs.clone(),
                add_special_tokens: true,
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            },
            VertexInstance::Chat(instance) => {
                let (generate_request, _using_tools): (GenerateRequest, bool) =
108
                    instance.try_into_generate(&infer)?;
Nicolas Patry's avatar
Nicolas Patry committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
                generate_request
            }
        };

        let infer_clone = infer.clone();
        let compute_type_clone = compute_type.clone();
        let span_clone = span.clone();

        futures.push(async move {
            generate_internal(
                Extension(infer_clone),
                compute_type_clone,
                Json(generate_request),
                span_clone,
            )
            .await
Nicolas Patry's avatar
Nicolas Patry committed
125
            .map(|(_, _, Json(generation))| generation.generated_text)
Nicolas Patry's avatar
Nicolas Patry committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
            .map_err(|_| {
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Incomplete generation".into(),
                        error_type: "Incomplete generation".into(),
                    }),
                )
            })
        });
    }

    // execute all futures in parallel, collect results, returning early if any error occurs
    let results = futures::future::join_all(futures).await;
    let predictions: Result<Vec<_>, _> = results.into_iter().collect();
    let predictions = predictions?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{Message, MessageContent};

    #[test]
    fn vertex_deserialization() {
        let string = serde_json::json!({

        "instances": [
            {
                "messages": [{"role": "user", "content": "What's Deep Learning?"}],
159
160
161
                "max_tokens": 128,
                "top_p": 0.95,
                "temperature": 0.7
Nicolas Patry's avatar
Nicolas Patry committed
162
163
164
165
166
167
168
169
            }
        ]

        });
        let request: VertexRequest = serde_json::from_value(string).expect("Can deserialize");
        assert_eq!(
            request,
            VertexRequest {
170
                instances: vec![VertexInstance::Chat(ChatRequest {
Nicolas Patry's avatar
Nicolas Patry committed
171
172
173
174
175
                    messages: vec![Message {
                        role: "user".to_string(),
                        content: MessageContent::SingleText("What's Deep Learning?".to_string()),
                        name: None,
                    },],
176
177
178
179
                    max_tokens: Some(128),
                    top_p: Some(0.95),
                    temperature: Some(0.7),
                    ..Default::default()
Nicolas Patry's avatar
Nicolas Patry committed
180
181
182
183
184
                })]
            }
        );
    }
}