test_mllama.py 2.88 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
3
4
5
6
import pytest
import asyncio


@pytest.fixture(scope="module")
def mllama_handle(launcher):
Nicolas Patry's avatar
Nicolas Patry committed
7
8
9
10
    with launcher(
        "meta-llama/Llama-3.2-11B-Vision-Instruct",
        num_shard=2,
    ) as handle:
Nicolas Patry's avatar
Nicolas Patry committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        yield handle


@pytest.fixture(scope="module")
async def mllama(mllama_handle):
    await mllama_handle.health(300)
    return mllama_handle.client


@pytest.mark.asyncio
async def test_mllama_simpl(mllama, response_snapshot):
    response = await mllama.chat(
        max_tokens=10,
        temperature=0.0,
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "Can you tell me a very short story based on the image?",
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": "https://raw.githubusercontent.com/huggingface/text-generation-inference/main/integration-tests/images/chicken_on_money.png"
                        },
                    },
                ],
            },
        ],
    )

    assert response.usage == {
        "completion_tokens": 10,
        "prompt_tokens": 50,
        "total_tokens": 60,
    }
    assert (
        response.choices[0].message.content
        == "In a bustling city, a chicken named Cluck"
    )
    assert response == response_snapshot


@pytest.mark.release
@pytest.mark.asyncio
async def test_mllama_load(mllama, generate_load, response_snapshot):
    futures = [
        mllama.chat(
            max_tokens=10,
            temperature=0.0,
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": "Can you tell me a very short story based on the image?",
                        },
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": "https://raw.githubusercontent.com/huggingface/text-generation-inference/main/integration-tests/images/chicken_on_money.png"
                            },
                        },
                    ],
                },
            ],
        )
Nicolas Patry's avatar
Nicolas Patry committed
81
82
83
        # TODO with v3, 4 breaks here. Nothing accounts of the image VRAM
        # because mllama is the only one doing its thing.
        for i in range(2)
Nicolas Patry's avatar
Nicolas Patry committed
84
85
86
    ]
    responses = await asyncio.gather(*futures)

Nicolas Patry's avatar
Nicolas Patry committed
87
    _ = [response.choices[0].message.content for response in responses]
Nicolas Patry's avatar
Nicolas Patry committed
88

Nicolas Patry's avatar
Nicolas Patry committed
89
90
91
92
93
94
95
    # XXX: TODO: Fix this test.
    # assert generated_texts[0] == "In a bustling city, a chicken named Cluck"
    # assert len(generated_texts) == 4
    # assert generated_texts, all(
    #     [text == generated_texts[0] for text in generated_texts]
    # )
    # assert responses == response_snapshot