gptq.py 7.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from dataclasses import dataclass
from typing import Optional

import numpy
import torch
import torch.nn as nn
from loguru import logger
from text_generation_server.layers.marlin.util import (
    _check_marlin_kernels,
    marlin_zero_points,
    permute_scales,
    unpack_cols,
)
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import Weight

try:
    import marlin_kernels
except ImportError:
    marlin_kernels = None

try:
    major, _minor = torch.cuda.get_device_capability()
    has_sm_8_0 = major >= 8
except Exception:
    has_sm_8_0 = False


GPTQ_MARLIN_BITS = [4, 8]
GPTQ_MARLIN_GROUP_SIZES = [-1, 32, 64, 128]
MARLIN_TILE_SIZE = 16


def can_use_gptq_marlin(
    *, bits: int, groupsize: int, quant_method: str, quantize: str, sym: bool
) -> bool:
    return (
        SYSTEM == "cuda"
        and marlin_kernels is not None
        and has_sm_8_0
        and quantize in {"awq", "gptq"}
        and quant_method in {"awq", "gptq"}
        and bits in GPTQ_MARLIN_BITS
        and groupsize in GPTQ_MARLIN_GROUP_SIZES
        # We only suppord asymmetric quantization for AWQ.
        and (sym or quant_method == "awq")
    )


@dataclass
class GPTQMarlinWeight(Weight):
    """
    Repacked GPTQ Marlin weights.
    """

    qweight: torch.Tensor
    qzeros: torch.Tensor
    scales: torch.Tensor
    g_idx: torch.Tensor
    perm: torch.Tensor
    bits: int
    is_full_k: bool

    def __post_init__(self):
        assert self.qweight.dtype == torch.int32
        assert self.scales.dtype == torch.float16
        assert self.g_idx.dtype == torch.int32
        assert self.perm.dtype == torch.int32

    def get_linear(self, bias: torch.Tensor):
        return GPTQMarlinLinear(
            weight=self,
            bias=bias,
        )


def repack_gptq_for_marlin(
    *,
    qweight: torch.Tensor,
    qzeros: Optional[torch.Tensor],
    scales: torch.Tensor,
    g_idx: Optional[torch.Tensor],
    bits: int,
    desc_act: bool,
    groupsize: int,
    quant_method: str,
    sym: bool,
    sharded_infeatures: bool,
) -> GPTQMarlinWeight:
    """Convert GPTQ weights to a layout that's compatible with GPTQ-Marlin kernels."""
    _check_marlin_kernels()
    assert marlin_kernels is not None

    if bits not in GPTQ_MARLIN_BITS:
        supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
        raise RuntimeError(
            f"Repacking {bits}-bit GPTQ weights as Marlin is not supported, must be one of: {supported_bits}"
        )

    if groupsize not in GPTQ_MARLIN_GROUP_SIZES:
        supported_sizes = ", ".join(str(b) for b in GPTQ_MARLIN_GROUP_SIZES)
        raise RuntimeError(
            f"Repacking GPTQ weights with group size {groupsize} as Marlin is not supported, must be one of: {supported_sizes}"
        )
    if not (sym or quant_method == "awq"):
        raise RuntimeError(
            "Repacking GPTQ weights with asymmetric quantization as Marlin is not supported."
        )

    log_once(logger.info, f"Converting {quant_method} model to Marlin packing format.")

    weights_per_int = 32 // bits
    in_features = qweight.shape[0]
    out_features = qweight.shape[1]

    # AWQ uses column packing, GPTQ uses row packing
    if quant_method == "awq":
        out_features *= weights_per_int
    else:
        in_features *= weights_per_int

    if in_features % groupsize != 0:
        raise ValueError(
            f"Number of input features ({in_features}) not divisible by group size ({groupsize})"
        )

    if g_idx is not None and desc_act and groupsize != -1:
        perm = torch.argsort(g_idx).to(torch.int)
        g_idx = g_idx[perm]
    else:
        perm = torch.empty(0, dtype=torch.int, device=qweight.device)
        g_idx = torch.empty(0, dtype=torch.int, device=qweight.device)

    if quant_method == "awq":
        repacked = marlin_kernels.awq_marlin_repack(
            qweight, in_features, out_features, bits
        )
        if qzeros is not None:
            qzeros = awq_to_marlin_zero_points(
                qzeros,
                in_features // groupsize,
                out_features,
                bits,
            )

    else:
        repacked = marlin_kernels.gptq_marlin_repack(
            qweight, perm, in_features, out_features, bits
        )

    if qzeros is None:
        qzeros = torch.empty(0, dtype=torch.int, device=qweight.device)

    scales = permute_scales(scales)

    is_full_k = not (desc_act and sharded_infeatures)

    return GPTQMarlinWeight(
        qweight=repacked,
        qzeros=qzeros,
        scales=scales,
        g_idx=g_idx,
        perm=perm,
        bits=bits,
        is_full_k=is_full_k,
    )


class GPTQMarlinLinear(nn.Module):
    """
    Linear layer for GPTQ weights that were converted for the GPTQ-Marlin
    kernels.
    """

    def __init__(
        self,
        *,
        weight: GPTQMarlinWeight,
        bias: Optional[torch.Tensor],
    ):
        super().__init__()

        _check_marlin_kernels()
        assert marlin_kernels is not None

        in_features = weight.qweight.shape[0] * MARLIN_TILE_SIZE
        out_features = weight.scales.shape[1]
        _check_valid_shape(in_features=in_features, out_features=out_features)

        self.bits = weight.bits
        self.is_full_k = weight.is_full_k

        self.qweight = weight.qweight
        self.qzeros = weight.qzeros
        self.scales = weight.scales
        self.g_idx = weight.g_idx
        self.perm = weight.perm
        if bias is not None:
            self.bias = bias
        else:
            self.bias = None

        self.workspace = torch.zeros(
            out_features // 64 * 16, dtype=torch.int, device=weight.qweight.device
        )

    def forward(self, A: torch.Tensor) -> torch.Tensor:
        assert marlin_kernels is not None

        A_flat = A.view(-1, A.shape[-1])
        C = marlin_kernels.gptq_marlin_gemm(
            A_flat,
            self.qweight,
            self.scales,
            self.qzeros,
            self.g_idx,
            self.perm,
            self.workspace,
            self.bits,
            A_flat.shape[0],
            self.scales.shape[1],
            A_flat.shape[1],
            self.is_full_k,
            self.qzeros.numel() > 0,
        )
        C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))

        if self.bias is not None:
            C += self.bias

        return C


def awq_to_marlin_zero_points(
    q_zp_packed: torch.Tensor, size_k: int, size_n: int, num_bits: int
) -> torch.Tensor:
    # AWQ zero-points are quantized and packed on the column dim.
    # In addition, the values are permuted based on dequantizer.
    # Here we undo both of these, and then apply marlin permutation
    # and pack it back.
    q_zp = unpack_cols(q_zp_packed, num_bits, size_k, size_n)

    # Undo interleaving (use argsort(..) to get inverse perm)
    if num_bits == 4:
        undo_interleave = numpy.argsort(numpy.array([0, 2, 4, 6, 1, 3, 5, 7]))
    elif num_bits == 8:
        undo_interleave = numpy.argsort(numpy.array([0, 2, 1, 3]))
    else:
        raise Exception("num_bits must be 4 or 8, got {}".format(num_bits))

    q_zp = q_zp.reshape((-1, len(undo_interleave)))[:, undo_interleave].ravel()
    q_zp = q_zp.reshape((-1, size_n)).contiguous()

    marlin_zp = marlin_zero_points(q_zp, size_k, size_n, num_bits)
    return marlin_zp


def _check_valid_shape(in_features: int, out_features: int):
    if (in_features % 128 != 0 or out_features % 64 != 0) and (
        in_features % 64 != 0 or out_features % 128 != 0
    ):
        raise ValueError(
            f"The GPTQ Marlin kernel does not have a valid thread configuration for weight matrix with shape ({out_features}, {in_features})."
            " The shape elements must be divisible by (128, 64) or (64, 128)."
        )