mllama.py 36.7 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Mllama model."""

from typing import Optional, Tuple, List

import torch
import torch.utils.checkpoint
from torch import nn
22
23
24
25
26
27
from text_generation_server.utils.import_utils import SYSTEM

if SYSTEM == "ipex":
    import intel_extension_for_pytorch as ipex
else:
    import flash_attn_2_cuda
Nicolas Patry's avatar
Nicolas Patry committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

from transformers.activations import ACT2FN
import torch.nn.functional as F

from text_generation_server.layers import (
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
    TensorParallelRowLinear,
    FastLinear,
)
from text_generation_server.layers.attention import (
    Seqlen,
)
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
    FlashLlamaForCausalLM,
)


def _prepare_aspect_ratio_attention_mask(
    aspect_ratio_mask: torch.Tensor,
    num_patches: int,
    target_length: int,
    dtype: torch.dtype,
) -> torch.Tensor:
    # Expand aspect ratio mask to target_length
    batch_size, max_num_tiles = aspect_ratio_mask.shape
    attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1, 1).to(dtype)
    attention_mask = attention_mask.repeat(1, 1, target_length, 1)

    # Mask padding patches
    pad_patches = target_length - num_patches
    attention_mask[:, :, -pad_patches:] = 0

    # Invert the mask (0 -> 1, 1 -> 0)
    attention_mask = 1 - attention_mask

    # Reshape to 2D and create 4D attention mask
    # (batch_size, 1, max_num_tiles * target_length, max_num_tiles * target_length)
    attention_mask = attention_mask.reshape(
        batch_size, max_num_tiles * target_length, 1
    )
    attention_mask = (
        attention_mask @ attention_mask.transpose(-1, -2) * torch.finfo(dtype).min
    )
    attention_mask = attention_mask.unsqueeze(1)

    return attention_mask


# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
    attention_mask: torch.Tensor,
    sequence_length: int,
    target_length: int,
    dtype: torch.dtype,
    device: torch.device,
    min_dtype: float,
    cache_position: torch.Tensor,
    batch_size: int,
):
    """
    Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
    `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

    Args:
        attention_mask (`torch.Tensor`):
            A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
        sequence_length (`int`):
            The sequence length being processed.
        target_length (`int`):
            The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
        dtype (`torch.dtype`):
            The dtype to use for the 4D attention mask.
        device (`torch.device`):
            The device to plcae the 4D attention mask on.
        min_dtype (`float`):
            The minimum value representable with the dtype `dtype`.
        cache_position (`torch.Tensor`):
            Indices depicting the position of the input sequence tokens in the sequence.
        batch_size (`torch.Tensor`):
            Batch size.
    """
    if attention_mask is not None and attention_mask.dim() == 4:
        # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
        causal_mask = attention_mask
    else:
        causal_mask = torch.full(
            (sequence_length, target_length),
            fill_value=min_dtype,
            dtype=dtype,
            device=device,
        )
        if sequence_length != 1:
            causal_mask = torch.triu(causal_mask, diagonal=1)
        causal_mask *= torch.arange(
            target_length, device=device
        ) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
        if attention_mask is not None:
            causal_mask = (
                causal_mask.clone()
            )  # copy to contiguous memory for in-place edit
            mask_length = attention_mask.shape[-1]
            padding_mask = (
                causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
            )
            padding_mask = padding_mask == 0
            causal_mask[:, :, :, :mask_length] = causal_mask[
                :, :, :, :mask_length
            ].masked_fill(padding_mask, min_dtype)

    return causal_mask


def _prepare_cross_attention_mask(
    cross_attention_mask: torch.Tensor,
    num_vision_tokens: int,
    dtype: str,
) -> Tuple[torch.Tensor, torch.Tensor]:
    # reshape so it can be used by attn module
    batch_size, text_total_length, *_ = cross_attention_mask.shape
    cross_attention_mask = cross_attention_mask.repeat_interleave(
        num_vision_tokens, dim=3
    )
    cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1)
    cross_attention_mask = cross_attention_mask.unsqueeze(1)

    # invert the mask
    inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype)
    cross_attention_mask = inverted_cross_attn_mask.masked_fill(
        inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min
    )

    # apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's
    # last dimension contains negative infinity values, otherwise it's 1
    negative_inf_value = torch.finfo(dtype).min
    full_text_row_masked_out_mask = (
        (cross_attention_mask != negative_inf_value)
        .any(dim=-1)
        .type_as(cross_attention_mask)[..., None]
    )
    cross_attention_mask *= full_text_row_masked_out_mask

    return cross_attention_mask, full_text_row_masked_out_mask


# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->MllamaVision
class MllamaVisionMLP(nn.Module):
    def __init__(self, *, prefix, config, weights):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = TensorParallelColumnLinear.load(
            prefix=f"{prefix}.fc1", weights=weights, config=config, bias=True
        )
        self.fc2 = TensorParallelRowLinear.load(
            prefix=f"{prefix}.fc2", weights=weights, config=config, bias=True
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class MllamaVisionSdpaAttention(nn.Module):
    def __init__(self, *, prefix, config, weights):
        super().__init__()

        self.embed_dim = config.hidden_size
        self.head_dim = config.hidden_size // config.attention_heads
        self.num_heads = config.attention_heads // weights.process_group.size()

        self.qkv_proj = TensorParallelColumnLinear.load_multi(
            config,
            prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
            dim=0,
            weights=weights,
            bias=False,
        )
        self.o_proj = TensorParallelRowLinear.load(
            config,
            prefix=f"{prefix}.o_proj",
            weights=weights,
            bias=False,
        )

    def forward(
        self,
        hidden_state: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        qkv = self.qkv_proj(hidden_state)
        query, key, value = qkv.split(
            [
                self.head_dim * self.num_heads,
                self.head_dim * self.num_heads,
                self.head_dim * self.num_heads,
            ],
            dim=2,
        )

        batch_size, q_seq_len, _ = query.shape
        _, kv_seq_len, _ = key.shape

        query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim)
        key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
        value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)

        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)

        attn_output = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(batch_size, q_seq_len, -1)

        output = self.o_proj(attn_output)
        return output


class MllamaVisionEncoderLayer(nn.Module):
    def __init__(self, *, prefix, config, weights, is_gated: bool):
        super().__init__()

        self.hidden_size = config.hidden_size
        self.num_attention_heads = config.attention_heads
        self.is_gated = is_gated
        self.intermediate_size = config.intermediate_size

        self.self_attn = MllamaVisionSdpaAttention(
            prefix=f"{prefix}.self_attn", config=config, weights=weights
        )
        self.mlp = MllamaVisionMLP(
            prefix=f"{prefix}.mlp", config=config, weights=weights
        )

        self.input_layernorm = nn.LayerNorm.load(
            prefix=f"{prefix}.input_layernorm", weights=weights, eps=1e-05
        )
        self.post_attention_layernorm = nn.LayerNorm.load(
            prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=1e-05
        )

        # there used to be an if else here, no code path
        if is_gated:
            self.gate_attn = nn.Parameter(
                weights.get_tensor(f"{prefix}.gate_attn"), requires_grad=False
            )
            self.gate_ffn = nn.Parameter(
                weights.get_tensor(f"{prefix}.gate_ffn"), requires_grad=False
            )

    def forward(
        self,
        hidden_state: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        # Self Attention
        residual = hidden_state
        hidden_state = self.input_layernorm(hidden_state)
        hidden_state = self.self_attn(hidden_state, attention_mask=attention_mask)
        gate_attn = 1 if not self.is_gated else self.gate_attn.tanh()
        hidden_state = residual + gate_attn * hidden_state

        # Feed forward
        residual = hidden_state
        hidden_state = self.post_attention_layernorm(hidden_state)
        hidden_state = self.mlp(hidden_state)
        gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh()
        hidden_state = residual + gate_ffn * hidden_state
        return hidden_state


class MllamaVisionEncoder(nn.Module):
    def __init__(self, *, prefix, config, weights, is_gated: bool, num_layers: int):
        super().__init__()
        self.config = config
        self.layers = [
            MllamaVisionEncoderLayer(
                prefix=f"{prefix}.layers.{i}",
                config=config,
                weights=weights,
                is_gated=is_gated,
            )
            for i in range(num_layers)
        ]

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
    ):
        encoder_states = [hidden_states]
        for encoder_layer in self.layers:
            layer_outputs = encoder_layer(
                hidden_states,
                attention_mask,
            )

            hidden_states = layer_outputs
            encoder_states.append(hidden_states)

        return hidden_states, encoder_states


class MllamaPrecomputedAspectRatioEmbedding(nn.Module):
    def __init__(self, *, prefix, config, weights):
        super().__init__()
        self.max_num_tiles = config.max_num_tiles
        self.hidden_size = config.hidden_size
        self.max_aspect_ratio_id = config.max_aspect_ratio_id

        self.embedding = TensorParallelEmbedding(
            prefix=f"{prefix}.embedding", weights=weights
        )
        self.gate = nn.Parameter(
            weights.get_tensor(f"{prefix}.gate"), requires_grad=False
        )

    def forward(
        self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor
    ) -> torch.Tensor:
        embeddings = self.embedding(aspect_ratio_ids)
        embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size)

        # Always gated.
        embeddings = embeddings * self.gate.tanh()

        hidden_state = hidden_state + embeddings
        return hidden_state


class MllamaPrecomputedPositionEmbedding(nn.Module):
    def __init__(self, *, prefix, config, weights):
        super().__init__()
        self.max_num_tiles = config.max_num_tiles
        self.max_aspect_ratio_id = config.max_aspect_ratio_id
        self.num_patches = (config.image_size // config.patch_size) ** 2 + 1
        self.hidden_size = config.hidden_size
        self.scale = config.hidden_size**-0.5

        self.gate = nn.Parameter(
            weights.get_tensor(f"{prefix}.gate"), requires_grad=False
        )

        # position embedding
        embedding = nn.Parameter(
            weights.get_tensor(f"{prefix}.embedding"), requires_grad=False
        )
        self.gated_position_embedding = (1 - self.gate.tanh()) * embedding
        self.tile_embedding = TensorParallelEmbedding(
            prefix=f"{prefix}.tile_embedding", weights=weights
        )

    def forward(
        self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor
    ) -> torch.Tensor:
        # position embeddings
        hidden_state = hidden_state + self.gated_position_embedding.view(
            1, 1, self.num_patches, self.hidden_size
        )

        # precomputed tile position embeddings
        tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
        batch_size = hidden_state.shape[0]
        tile_position_embedding = tile_position_embedding.reshape(
            batch_size, self.max_num_tiles, self.num_patches, self.hidden_size
        )
        gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding
        hidden_state = hidden_state + gated_tile_position_embedding

        return hidden_state


class MllamaVisionModel(nn.Module):
    def __init__(self, *, prefix, config, weights):
        super().__init__()
        self.image_size = config.image_size
        self.patch_size = config.patch_size
        self.max_num_tiles = config.max_num_tiles
        self.hidden_size = config.hidden_size
        self.num_channels = config.num_channels
        self.intermediate_layers_indices = config.intermediate_layers_indices

        self.num_patches = (self.image_size // self.patch_size) ** 2 + 1
        self.scale = config.hidden_size**-0.5
        self.dtype = weights.dtype

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.hidden_size,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            padding="valid",
            bias=False,
        )
        self.patch_embedding.weight = nn.Parameter(
            weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False
        )

        self.class_embedding = nn.Parameter(
            weights.get_tensor(f"{prefix}.class_embedding"), requires_grad=False
        )

        self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(
            prefix=f"{prefix}.gated_positional_embedding",
            config=config,
            weights=weights,
        )

        self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(
            prefix=f"{prefix}.pre_tile_positional_embedding",
            config=config,
            weights=weights,
        )
        self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(
            prefix=f"{prefix}.post_tile_positional_embedding",
            config=config,
            weights=weights,
        )

        ## layer norms
        self.layernorm_pre = nn.LayerNorm.load(
            prefix=f"{prefix}.layernorm_pre",
            weights=weights,
            # torch default
            eps=1e-05,
        )
        self.layernorm_post = nn.LayerNorm.load(
            prefix=f"{prefix}.layernorm_post",
            weights=weights,
            # torch default
            eps=1e-05,
        )

        ## encoders
        self.transformer = MllamaVisionEncoder(
            prefix=f"{prefix}.transformer",
            config=config,
            weights=weights,
            is_gated=False,
            num_layers=config.num_hidden_layers,
        )
        self.global_transformer = MllamaVisionEncoder(
            prefix=f"{prefix}.global_transformer",
            config=config,
            weights=weights,
            is_gated=True,
            num_layers=config.num_global_layers,
        )

    def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor:
        batch_size, _, hidden_size = hidden_state.shape
        class_embedding = self.class_embedding.expand(batch_size, 1, hidden_size)
        hidden_state = torch.cat([class_embedding, hidden_state], dim=1)
        return hidden_state

    def forward(
        self,
        pixel_values: torch.Tensor,
        aspect_ratio_ids: torch.Tensor,
        attention_mask: torch.Tensor,
    ) -> torch.Tensor:
        batch_size, num_concurrent_media, num_tiles, num_channels, height, width = (
            pixel_values.shape
        )

        pixel_values = pixel_values.reshape(
            batch_size * num_concurrent_media * num_tiles, num_channels, height, width
        )
        aspect_ratio_ids = aspect_ratio_ids.reshape(
            batch_size * num_concurrent_media, -1
        )

        # patch embedding
        patch_embeds = self.patch_embedding(pixel_values)
        hidden_state = patch_embeds.flatten(2).transpose(1, 2)

        # tile embeddings
        _, num_patches, dim = hidden_state.shape
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media, num_tiles, -1, dim
        )
        hidden_state = self.pre_tile_positional_embedding(
            hidden_state, aspect_ratio_ids
        )

        # apply cls token
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media * num_tiles, num_patches, dim
        )
        hidden_state = self.apply_class_embedding(hidden_state)
        num_patches += 1

        # apply position embeddings
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media, num_tiles, num_patches, dim
        )
        hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids)

        # apply encoder
        hidden_state = self.layernorm_pre(hidden_state)

        # Compute the number of tokens to pad
        num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
        # Compute padding tuple for pad function
        padding = (
            0,
            0,
            0,
            num_padding_patches,
        )  # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
        # Pad the tensor
        hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
        slice_index = -num_padding_patches if num_padding_patches > 0 else None

        if attention_mask is not None:
            attention_mask = attention_mask.reshape(
                batch_size * num_concurrent_media, -1
            )
            attention_mask = _prepare_aspect_ratio_attention_mask(
                aspect_ratio_mask=attention_mask,
                num_patches=self.num_patches,
                target_length=hidden_state.shape[2],
                dtype=self.dtype,
            )

        hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim)
        hidden_state, all_intermediate_hidden_states = self.transformer(
            hidden_state,
            attention_mask=attention_mask,
        )
        intermediate_hidden_states = [
            hidden_state
            for idx, hidden_state in enumerate(all_intermediate_hidden_states)
            if idx in self.intermediate_layers_indices
        ]
        intermediate_hidden_states = torch.stack(intermediate_hidden_states, dim=-1)

        # apply global encoder
        hidden_state = self.layernorm_post(hidden_state)
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media,
            num_tiles,
            num_patches + num_padding_patches,
            dim,
        )
        hidden_state = self.post_tile_positional_embedding(
            hidden_state, aspect_ratio_ids
        )
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media,
            num_tiles * (num_patches + num_padding_patches),
            dim,
        )
        hidden_state, _ = self.global_transformer(
            hidden_state, attention_mask=attention_mask
        )
        hidden_state = hidden_state.reshape(
            batch_size * num_concurrent_media,
            num_tiles,
            num_patches + num_padding_patches,
            dim,
        )
        hidden_state = hidden_state[:, :, :slice_index]

        # adding intermediate layer outputs
        hidden_state = hidden_state.reshape(
            batch_size, num_concurrent_media, num_tiles, num_patches, dim
        )
        intermediate_hidden_states = intermediate_hidden_states.reshape(
            batch_size * num_concurrent_media,
            num_tiles,
            num_patches + num_padding_patches,
            -1,
        )
        intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index]
        intermediate_hidden_states = intermediate_hidden_states.reshape(
            batch_size, num_concurrent_media, num_tiles, num_patches, -1
        )
        hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1)
        return hidden_state


class MllamaTextCrossAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, *, prefix, config, weights, layer_idx):
        super().__init__()
        self.config = config
        self.num_heads = self.config.num_attention_heads
        self.num_key_value_heads = self.config.num_key_value_heads
        self.dropout = config.dropout
        self.hidden_size = config.hidden_size
        self.head_size = config.hidden_size // self.num_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.layer_idx = layer_idx

        self.num_heads = self.num_heads // weights.process_group.size()
        self.num_key_value_heads = (
            self.num_key_value_heads // weights.process_group.size()
        )

        self.q_proj = TensorParallelColumnLinear.load(
            config,
            prefix=f"{prefix}.q_proj",
            weights=weights,
            bias=False,
        )
        self.k_proj = TensorParallelColumnLinear.load(
            config,
            prefix=f"{prefix}.k_proj",
            weights=weights,
            bias=False,
        )
        self.v_proj = TensorParallelColumnLinear.load(
            config,
            prefix=f"{prefix}.v_proj",
            weights=weights,
            bias=False,
        )
        self.o_proj = TensorParallelRowLinear.load(
            config,
            prefix=f"{prefix}.o_proj",
            weights=weights,
            bias=False,
        )

        self.q_norm = MllamaTextRMSNorm.load(
            prefix=f"{prefix}.q_norm", weights=weights, eps=config.rms_norm_eps
        )
        self.k_norm = MllamaTextRMSNorm.load(
            prefix=f"{prefix}.k_norm", weights=weights, eps=config.rms_norm_eps
        )
        self.softmax_scale = self.head_size**-0.5

    def forward(
        self,
        hidden_states: torch.Tensor,
        cross_attention_states: Optional[torch.Tensor] = None,
        # past_key_value=None,
        # attention_mask: Optional[torch.Tensor] = None,
        # cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""
        # hidden_states = hidden_states.unsqueeze(0)
        # bsz, q_len, _ = hidden_states.size()
        query_states = self.q_proj(hidden_states)
        query_states = query_states.view(-1, self.num_heads, self.head_size)
        query_states = self.q_norm(query_states)

        (
            cross_attention_states,
            cu_seqlen_q,
            cu_seqlen_k,
            max_q,
            max_k,
            indices,
        ) = cross_attention_states

        key_states = self.k_proj(cross_attention_states)
        value_states = self.v_proj(cross_attention_states)
        key_states = key_states.view(-1, self.num_key_value_heads, self.head_size)
        value_states = value_states.view(-1, self.num_key_value_heads, self.head_size)
        key_states = self.k_norm(key_states)

        # key_states = key_states.repeat(1, self.num_key_value_groups, 1)
        # value_states = value_states.repeat(1, self.num_key_value_groups, 1)

        causal = False
        # logger.info(
        #     f"Q: {query_states.shape} -K {key_states.shape} - V{value_states.shape}"
        # )
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
        if SYSTEM == "ipex":
            attn_output = torch.empty_like(query_states)
            ipex.llm.functional.varlen_attention(
                (
                    query_states.contiguous()
                    if query_states.device.type == "xpu"
                    else query_states
                ),
                (
                    key_states.contiguous()
                    if key_states.device.type == "xpu"
                    else key_states
                ),
                (
                    value_states.contiguous()
                    if value_states.device.type == "xpu"
                    else value_states
                ),
                attn_output,
                cu_seqlen_q,
                cu_seqlen_k,
                max_q,
                max_k,
                0.0,
                self.softmax_scale,
                False,
                causal,
                False,
                None,
            )
        else:
            attn_output = flash_attn_2_cuda.varlen_fwd(
                query_states,
                key_states,
                value_states,
                None,
                cu_seqlen_q,
                cu_seqlen_k,
                None,
                None,
                None,  # block_tables
                None,
                max_q,
                max_k,
                0.0,
                self.softmax_scale,
                False,
                causal,  # Causal
                -1,  # window_size_left,
                -1,
                0.0,  # softcap
                False,
                None,
            )[0]
Nicolas Patry's avatar
Nicolas Patry committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        attn_output = self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))

        return attn_output


# Copied from transformers.models.gemma2.modeling_gemma2.Gemma2MLP with Gemma2->MllamaText
class MllamaTextMLP(nn.Module):
    def __init__(self, *, prefix, config, weights):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = (
            config.intermediate_size // weights.process_group.size()
        )
        self.gate_up_proj = TensorParallelColumnLinear.load_multi(
            config,
            prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
            weights=weights,
            dim=0,
            bias=False,
        )
        self.down_proj = TensorParallelRowLinear.load(
            config,
            prefix=f"{prefix}.down_proj",
            weights=weights,
            bias=False,
        )
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        shape = x.shape
        gate_up_states = self.gate_up_proj(x)
        gate_up_states = gate_up_states.view(*shape[:-1], 2, self.intermediate_size)
        result = self.down_proj(
            self.act_fn(gate_up_states[:, 0]) * gate_up_states[:, 1]
        )
        return result


class FlashLlamaCrossLayer(torch.nn.Module):
    """Cross-attention transformer block with tanh-gated attention and feedforward."""

    def __init__(self, *, prefix, config, weights, index) -> None:
        layer_idx = index
        super().__init__()
        self.cross_attn = MllamaTextCrossAttention(
            prefix=f"{prefix}.cross_attn",
            config=config,
            weights=weights,
            layer_idx=layer_idx,
        )

        self.input_layernorm = MllamaTextRMSNorm.load(
            prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
        )
        self.cross_attn_attn_gate = torch.nn.Parameter(
            weights.get_tensor(f"{prefix}.cross_attn_attn_gate"), requires_grad=False
        )

        self.mlp = MllamaTextMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
        self.post_attention_layernorm = MllamaTextRMSNorm.load(
            prefix=f"{prefix}.post_attention_layernorm",
            weights=weights,
            eps=config.rms_norm_eps,
        )
        self.cross_attn_mlp_gate = torch.nn.Parameter(
            weights.get_tensor(f"{prefix}.cross_attn_mlp_gate"), requires_grad=False
        )
        self.layer_idx = layer_idx

    def forward(
        self,
        hidden_states,
        residual,
        cos,
        sin,
        cu_seqlen_prefill,
        kv_cache,
        block_tables,
        slots,
        seqlen,
        max_s,
        adapter_data,
        cross_attention_states,  # [ IB, ...]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if cross_attention_states is None:
            return hidden_states, residual
        if residual is not None:
            hidden_states += residual

        indices = cross_attention_states[-1]
        out_hidden_states = hidden_states[:]
        if len(indices) > 0:
            assert max(indices) < hidden_states.shape[0]
        hidden_states = hidden_states[indices]
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        hidden_states = self.cross_attn(
            hidden_states=hidden_states,
            # attention_mask=cross_attention_mask,
            cross_attention_states=cross_attention_states,
        )
        hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states

        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states

        out_hidden_states[indices] = hidden_states
        hidden_states = out_hidden_states

        return hidden_states, None


# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MllamaText
class MllamaTextRMSNorm(nn.Module):
    def __init__(self, weight, eps):
        super().__init__()
        self.weight = weight
        self.variance_epsilon = eps

    @classmethod
    def load(cls, *, prefix, weights, eps):
        weight = nn.Parameter(
            weights.get_tensor(f"{prefix}.weight"), requires_grad=False
        )
        return cls(weight=weight, eps=eps)

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class MllamaForConditionalGeneration(nn.Module):
    def __init__(self, prefix, config, weights):
        super().__init__()
        config.vision_config.quantize = None
        config.vision_config.speculator = config.speculator
        config.text_config.quantize = config.quantize
        config.text_config.speculator = config.speculator
        config.text_config._attn_implementation = "sdpa"
        self.hidden_size = config.text_config.hidden_size
        self.vision_model = MllamaVisionModel(
            prefix="vision_model", config=config.vision_config, weights=weights
        )
        self.multi_modal_projector = FastLinear.load(
            prefix="multi_modal_projector", config=config, weights=weights, bias=True
        )
        self.text_model = FlashLlamaForCausalLM(
            prefix="language_model", config=config.text_config, weights=weights
        )
        self.config = config
        self.dtype = weights.dtype
        self.device = weights.device

    def vision_forward(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask):
        if aspect_ratio_ids is None:
            raise ValueError(
                "`aspect_ratio_ids` must be provided if `pixel_values` is provided"
            )
        # logger.info(f"PIxel values {pixel_values.shape}")
        batch_size = pixel_values.shape[0]
        vision_states = self.vision_model(
            pixel_values, aspect_ratio_ids, aspect_ratio_mask
        )
        cross_attention_states = self.multi_modal_projector(vision_states).reshape(
            -1, vision_states.shape[-2], self.hidden_size
        )
        _, _, h = cross_attention_states.shape
        cross_attention_states = cross_attention_states.view(batch_size, -1, h)
        # logger.info(f"cross {cross_attention_states.shape}")
        return cross_attention_states

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        cu_seqlen_prefill: Optional[torch.Tensor],
        kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
        block_tables: torch.Tensor,
        slots: torch.Tensor,
        seqlen: Seqlen,
        max_s: int,
        prefill_cache_indices: Optional[torch.Tensor],
        lm_head_indices: Optional[torch.Tensor],
        adapter_data: Optional[torch.Tensor] = None,
        # XXX: Putting these as optional so that the cuda warmup calls can go through.
        cross_attention_states: Optional[torch.Tensor] = None,
        image_indices=None,
    ):
        if cross_attention_states is not None:
            seqlen_q = len(image_indices)
            n_images = cross_attention_states.shape[0]
            seqlen_k = cross_attention_states.shape[1]
            device = cross_attention_states.device
            if cu_seqlen_prefill is not None:
                offset = 0
                cu_q = []
                indices = []
                for index in image_indices:
                    cu_q.append(offset)
                    length = seqlen.input_lengths[index].item()
                    assert index < seqlen.cu_seqlen_q.shape[0]
                    input_ids_offset = seqlen.cu_seqlen_q[index]
                    indices.extend(range(input_ids_offset, input_ids_offset + length))
                    offset += length
                cu_q.append(offset)
                cu_seqlen_q = torch.Tensor(cu_q).to(device=device, dtype=torch.int32)

                assert max(indices) < input_ids.shape[0]

                cu_seqlen_k = (
                    torch.arange(
                        n_images + 1,
                        device=device,
                        dtype=torch.int32,
                    )
                    * seqlen_k
                )
                max_q = cu_seqlen_q[-1].item()
                max_k = seqlen_k
            else:
                cu_seqlen_q = torch.arange(
                    seqlen_q + 1, device=device, dtype=torch.int32
                )
                seqlen_k = cross_attention_states.shape[1]
                n_images = cross_attention_states.shape[0]
                cu_seqlen_k = (
                    torch.arange(
                        n_images + 1,
                        device=device,
                        dtype=torch.int32,
                    )
                    * seqlen_k
                )
                max_q = seqlen_q
                max_k = seqlen_k
                indices = image_indices[:]

            cross_attention_states = (
                cross_attention_states,
                cu_seqlen_q,
                cu_seqlen_k,
                max_q,
                max_k,
                indices,
            )

        outputs = self.text_model(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=cu_seqlen_prefill,
            kv_cache=kv_cache,
            block_tables=block_tables,
            slots=slots,
            seqlen=seqlen,
            max_s=max_s,
            prefill_cache_indices=prefill_cache_indices,
            lm_head_indices=lm_head_indices,
            adapter_data=adapter_data,
            cross_attention_states=cross_attention_states,
        )

        return outputs