client.py 31.2 KB
Newer Older
1
2
3
4
5
import json
import requests

from aiohttp import ClientSession, ClientTimeout
from pydantic import ValidationError
drbh's avatar
drbh committed
6
from typing import Dict, Optional, List, AsyncIterator, Iterator, Union
7
8
9
10
11
12

from text_generation.types import (
    StreamResponse,
    Response,
    Request,
    Parameters,
drbh's avatar
drbh committed
13
    Grammar,
drbh's avatar
drbh committed
14
15
16
17
18
    ChatRequest,
    ChatCompletionChunk,
    ChatComplete,
    Message,
    Tool,
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
)
from text_generation.errors import parse_error


class Client:
    """Client to make calls to a text-generation-inference instance

     Example:

     ```python
     >>> from text_generation import Client

     >>> client = Client("https://api-inference.huggingface.co/models/bigscience/bloomz")
     >>> client.generate("Why is the sky blue?").generated_text
     ' Rayleigh scattering'

     >>> result = ""
     >>> for response in client.generate_stream("Why is the sky blue?"):
     >>>     if not response.token.special:
     >>>         result += response.token.text
     >>> result
    ' Rayleigh scattering'
     ```
    """

    def __init__(
45
46
47
48
49
        self,
        base_url: str,
        headers: Optional[Dict[str, str]] = None,
        cookies: Optional[Dict[str, str]] = None,
        timeout: int = 10,
50
51
52
53
54
55
56
    ):
        """
        Args:
            base_url (`str`):
                text-generation-inference instance base url
            headers (`Optional[Dict[str, str]]`):
                Additional headers
57
58
            cookies (`Optional[Dict[str, str]]`):
                Cookies to include in the requests
59
60
61
62
63
            timeout (`int`):
                Timeout in seconds
        """
        self.base_url = base_url
        self.headers = headers
64
        self.cookies = cookies
65
66
        self.timeout = timeout

drbh's avatar
drbh committed
67
68
69
    def chat(
        self,
        messages: List[Message],
70
        repetition_penalty: Optional[float] = None,
drbh's avatar
drbh committed
71
72
73
74
75
76
77
78
79
80
81
82
        frequency_penalty: Optional[float] = None,
        logit_bias: Optional[List[float]] = None,
        logprobs: Optional[bool] = None,
        top_logprobs: Optional[int] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[float] = None,
        stream: bool = False,
        seed: Optional[int] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        tools: Optional[List[Tool]] = None,
83
        tool_prompt: Optional[str] = None,
drbh's avatar
drbh committed
84
85
86
87
88
89
90
91
        tool_choice: Optional[str] = None,
    ):
        """
        Given a list of messages, generate a response asynchronously

        Args:
            messages (`List[Message]`):
                List of messages
92
93
            repetition_penalty (`float`):
                The parameter for repetition penalty. 0.0 means no penalty. See [this
drbh's avatar
drbh committed
94
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
95
96
97
98
            frequency_penalty (`float`):
                The parameter for frequency penalty. 0.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
drbh's avatar
drbh committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
            logit_bias (`List[float]`):
                Adjust the likelihood of specified tokens
            logprobs (`bool`):
                Include log probabilities in the response
            top_logprobs (`int`):
                Include the `n` most likely tokens at each step
            max_tokens (`int`):
                Maximum number of generated tokens
            n (`int`):
                Generate `n` completions
            presence_penalty (`float`):
                The parameter for presence penalty. 0.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            stream (`bool`):
                Stream the response
            seed (`int`):
                Random sampling seed
            temperature (`float`):
                The value used to module the logits distribution.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation
            tools (`List[Tool]`):
                List of tools to use
123
124
            tool_prompt (`str`):
                A prompt to be appended before the tools
drbh's avatar
drbh committed
125
126
127
128
129
130
131
            tool_choice (`str`):
                The tool to use

        """
        request = ChatRequest(
            model="tgi",
            messages=messages,
132
            repetition_penalty=repetition_penalty,
drbh's avatar
drbh committed
133
134
135
136
137
138
139
140
141
142
143
144
            frequency_penalty=frequency_penalty,
            logit_bias=logit_bias,
            logprobs=logprobs,
            top_logprobs=top_logprobs,
            max_tokens=max_tokens,
            n=n,
            presence_penalty=presence_penalty,
            stream=stream,
            seed=seed,
            temperature=temperature,
            top_p=top_p,
            tools=tools,
145
            tool_prompt=tool_prompt,
drbh's avatar
drbh committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
            tool_choice=tool_choice,
        )
        if not stream:
            resp = requests.post(
                f"{self.base_url}/v1/chat/completions",
                json=request.dict(),
                headers=self.headers,
                cookies=self.cookies,
                timeout=self.timeout,
            )
            payload = resp.json()
            if resp.status_code != 200:
                raise parse_error(resp.status_code, payload)
            return ChatComplete(**payload)
        else:
            return self._chat_stream_response(request)

    def _chat_stream_response(self, request):
        resp = requests.post(
            f"{self.base_url}/v1/chat/completions",
            json=request.dict(),
            headers=self.headers,
            cookies=self.cookies,
            timeout=self.timeout,
            stream=True,
        )
        # iterate and print stream
        for byte_payload in resp.iter_lines():
            if byte_payload == b"\n":
                continue
            payload = byte_payload.decode("utf-8")
            if payload.startswith("data:"):
                json_payload = json.loads(payload.lstrip("data:").rstrip("\n"))
                try:
                    response = ChatCompletionChunk(**json_payload)
                    yield response
                except ValidationError:
                    raise parse_error(resp.status, json_payload)

185
186
187
188
    def generate(
        self,
        prompt: str,
        do_sample: bool = False,
189
        max_new_tokens: int = 20,
190
        best_of: Optional[int] = None,
191
        repetition_penalty: Optional[float] = None,
192
        frequency_penalty: Optional[float] = None,
193
194
195
196
197
198
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
199
200
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
201
        watermark: bool = False,
202
        decoder_input_details: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
203
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
204
        grammar: Optional[Grammar] = None,
205
206
207
208
209
210
211
212
213
214
215
    ) -> Response:
        """
        Given a prompt, generate the following text

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
216
217
            best_of (`int`):
                Generate best_of sequences and return the one if the highest token logprobs
218
219
220
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
221
222
223
224
            frequency_penalty (`float`):
                The parameter for frequency penalty. 1.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
225
226
227
228
229
230
231
232
233
234
235
236
237
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
238
239
240
241
242
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
243
            watermark (`bool`):
244
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
245
246
            decoder_input_details (`bool`):
                Return the decoder input token logprobs and ids
Nicolas Patry's avatar
Nicolas Patry committed
247
248
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
249
250
251
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
252
253
254
255
256
257

        Returns:
            Response: generated response
        """
        # Validate parameters
        parameters = Parameters(
258
            best_of=best_of,
259
260
261
262
            details=True,
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
263
            frequency_penalty=frequency_penalty,
264
265
266
267
268
269
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
270
271
            truncate=truncate,
            typical_p=typical_p,
272
            watermark=watermark,
273
            decoder_input_details=decoder_input_details,
OlivierDehaene's avatar
OlivierDehaene committed
274
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
275
            grammar=grammar,
276
277
278
279
280
281
282
        )
        request = Request(inputs=prompt, stream=False, parameters=parameters)

        resp = requests.post(
            self.base_url,
            json=request.dict(),
            headers=self.headers,
283
            cookies=self.cookies,
284
285
286
287
288
289
290
291
292
293
294
            timeout=self.timeout,
        )
        payload = resp.json()
        if resp.status_code != 200:
            raise parse_error(resp.status_code, payload)
        return Response(**payload[0])

    def generate_stream(
        self,
        prompt: str,
        do_sample: bool = False,
295
        max_new_tokens: int = 20,
296
        repetition_penalty: Optional[float] = None,
297
        frequency_penalty: Optional[float] = None,
298
299
300
301
302
303
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
304
305
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
306
        watermark: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
307
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
308
        grammar: Optional[Grammar] = None,
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    ) -> Iterator[StreamResponse]:
        """
        Given a prompt, generate the following stream of tokens

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
323
324
325
326
            frequency_penalty (`float`):
                The parameter for frequency penalty. 1.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
327
328
329
330
331
332
333
334
335
336
337
338
339
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
340
341
342
343
344
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
345
            watermark (`bool`):
346
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
Nicolas Patry's avatar
Nicolas Patry committed
347
348
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
349
350
351
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
352
353
354
355
356
357

        Returns:
            Iterator[StreamResponse]: stream of generated tokens
        """
        # Validate parameters
        parameters = Parameters(
358
            best_of=None,
359
            details=True,
360
            decoder_input_details=False,
361
362
363
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
364
            frequency_penalty=frequency_penalty,
365
366
367
368
369
370
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
371
372
            truncate=truncate,
            typical_p=typical_p,
373
            watermark=watermark,
Nicolas Patry's avatar
Nicolas Patry committed
374
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
375
            grammar=grammar,
376
377
378
379
380
381
382
        )
        request = Request(inputs=prompt, stream=True, parameters=parameters)

        resp = requests.post(
            self.base_url,
            json=request.dict(),
            headers=self.headers,
383
            cookies=self.cookies,
384
            timeout=self.timeout,
385
            stream=True,
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
        )

        if resp.status_code != 200:
            raise parse_error(resp.status_code, resp.json())

        # Parse ServerSentEvents
        for byte_payload in resp.iter_lines():
            # Skip line
            if byte_payload == b"\n":
                continue

            payload = byte_payload.decode("utf-8")

            # Event data
            if payload.startswith("data:"):
                # Decode payload
                json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
                # Parse payload
                try:
                    response = StreamResponse(**json_payload)
                except ValidationError:
                    # If we failed to parse the payload, then it is an error payload
                    raise parse_error(resp.status_code, json_payload)
                yield response


class AsyncClient:
    """Asynchronous Client to make calls to a text-generation-inference instance

     Example:

     ```python
     >>> from text_generation import AsyncClient

     >>> client = AsyncClient("https://api-inference.huggingface.co/models/bigscience/bloomz")
     >>> response = await client.generate("Why is the sky blue?")
     >>> response.generated_text
     ' Rayleigh scattering'

     >>> result = ""
     >>> async for response in client.generate_stream("Why is the sky blue?"):
     >>>     if not response.token.special:
     >>>         result += response.token.text
     >>> result
    ' Rayleigh scattering'
     ```
    """

    def __init__(
435
436
437
438
439
        self,
        base_url: str,
        headers: Optional[Dict[str, str]] = None,
        cookies: Optional[Dict[str, str]] = None,
        timeout: int = 10,
440
441
442
443
444
445
446
    ):
        """
        Args:
            base_url (`str`):
                text-generation-inference instance base url
            headers (`Optional[Dict[str, str]]`):
                Additional headers
447
448
            cookies (`Optional[Dict[str, str]]`):
                Cookies to include in the requests
449
450
451
452
453
            timeout (`int`):
                Timeout in seconds
        """
        self.base_url = base_url
        self.headers = headers
454
        self.cookies = cookies
455
        self.timeout = ClientTimeout(timeout)
456

drbh's avatar
drbh committed
457
458
459
    async def chat(
        self,
        messages: List[Message],
460
        repetition_penalty: Optional[float] = None,
drbh's avatar
drbh committed
461
462
463
464
465
466
467
468
469
470
471
472
        frequency_penalty: Optional[float] = None,
        logit_bias: Optional[List[float]] = None,
        logprobs: Optional[bool] = None,
        top_logprobs: Optional[int] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[float] = None,
        stream: bool = False,
        seed: Optional[int] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        tools: Optional[List[Tool]] = None,
473
        tool_prompt: Optional[str] = None,
drbh's avatar
drbh committed
474
475
476
477
478
479
480
481
        tool_choice: Optional[str] = None,
    ) -> Union[ChatComplete, AsyncIterator[ChatCompletionChunk]]:
        """
        Given a list of messages, generate a response asynchronously

        Args:
            messages (`List[Message]`):
                List of messages
482
            repetition_penalty (`float`):
drbh's avatar
drbh committed
483
484
                The parameter for frequency penalty. 0.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
485
486
487
488
            frequency_penalty (`float`):
                The parameter for frequency penalty. 0.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
drbh's avatar
drbh committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
            logit_bias (`List[float]`):
                Adjust the likelihood of specified tokens
            logprobs (`bool`):
                Include log probabilities in the response
            top_logprobs (`int`):
                Include the `n` most likely tokens at each step
            max_tokens (`int`):
                Maximum number of generated tokens
            n (`int`):
                Generate `n` completions
            presence_penalty (`float`):
                The parameter for presence penalty. 0.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            stream (`bool`):
                Stream the response
            seed (`int`):
                Random sampling seed
            temperature (`float`):
                The value used to module the logits distribution.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation
            tools (`List[Tool]`):
                List of tools to use
513
514
            tool_prompt (`str`):
                A prompt to be appended before the tools
drbh's avatar
drbh committed
515
516
517
518
519
520
521
            tool_choice (`str`):
                The tool to use

        """
        request = ChatRequest(
            model="tgi",
            messages=messages,
522
            repetition_penalty=repetition_penalty,
drbh's avatar
drbh committed
523
524
525
526
527
528
529
530
531
532
533
534
            frequency_penalty=frequency_penalty,
            logit_bias=logit_bias,
            logprobs=logprobs,
            top_logprobs=top_logprobs,
            max_tokens=max_tokens,
            n=n,
            presence_penalty=presence_penalty,
            stream=stream,
            seed=seed,
            temperature=temperature,
            top_p=top_p,
            tools=tools,
535
            tool_prompt=tool_prompt,
drbh's avatar
drbh committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
            tool_choice=tool_choice,
        )
        if not stream:
            return await self._chat_single_response(request)
        else:
            return self._chat_stream_response(request)

    async def _chat_single_response(self, request):
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
            async with session.post(
                f"{self.base_url}/v1/chat/completions", json=request.dict()
            ) as resp:
                payload = await resp.json()
                if resp.status != 200:
                    raise parse_error(resp.status, payload)
                return ChatComplete(**payload)

    async def _chat_stream_response(self, request):
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
            async with session.post(
                f"{self.base_url}/v1/chat/completions", json=request.dict()
            ) as resp:
                async for byte_payload in resp.content:
                    if byte_payload == b"\n":
                        continue
                    payload = byte_payload.decode("utf-8")
                    if payload.startswith("data:"):
                        json_payload = json.loads(payload.lstrip("data:").rstrip("\n"))
                        try:
                            response = ChatCompletionChunk(**json_payload)
                            yield response
                        except ValidationError:
                            raise parse_error(resp.status, json_payload)

574
575
576
577
    async def generate(
        self,
        prompt: str,
        do_sample: bool = False,
578
        max_new_tokens: int = 20,
579
        best_of: Optional[int] = None,
580
        repetition_penalty: Optional[float] = None,
581
        frequency_penalty: Optional[float] = None,
582
583
584
585
586
587
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
588
589
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
590
        watermark: bool = False,
591
        decoder_input_details: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
592
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
593
        grammar: Optional[Grammar] = None,
594
595
596
597
598
599
600
601
602
603
604
    ) -> Response:
        """
        Given a prompt, generate the following text asynchronously

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
605
606
            best_of (`int`):
                Generate best_of sequences and return the one if the highest token logprobs
607
608
609
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
610
611
612
613
            frequency_penalty (`float`):
                The parameter for frequency penalty. 1.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
614
615
616
617
618
619
620
621
622
623
624
625
626
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
627
628
629
630
631
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
632
            watermark (`bool`):
633
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
634
635
            decoder_input_details (`bool`):
                Return the decoder input token logprobs and ids
Nicolas Patry's avatar
Nicolas Patry committed
636
637
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
638
639
640
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
641
642
643
644

        Returns:
            Response: generated response
        """
drbh's avatar
drbh committed
645

646
647
        # Validate parameters
        parameters = Parameters(
648
            best_of=best_of,
649
            details=True,
650
            decoder_input_details=decoder_input_details,
651
652
653
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
654
            frequency_penalty=frequency_penalty,
655
656
657
658
659
660
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
661
662
            truncate=truncate,
            typical_p=typical_p,
663
            watermark=watermark,
Nicolas Patry's avatar
Nicolas Patry committed
664
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
665
            grammar=grammar,
666
667
668
        )
        request = Request(inputs=prompt, stream=False, parameters=parameters)

669
670
671
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
672
673
674
675
676
677
678
679
680
681
682
            async with session.post(self.base_url, json=request.dict()) as resp:
                payload = await resp.json()

                if resp.status != 200:
                    raise parse_error(resp.status, payload)
                return Response(**payload[0])

    async def generate_stream(
        self,
        prompt: str,
        do_sample: bool = False,
683
        max_new_tokens: int = 20,
684
        repetition_penalty: Optional[float] = None,
685
        frequency_penalty: Optional[float] = None,
686
687
688
689
690
691
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
692
693
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
694
        watermark: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
695
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
696
        grammar: Optional[Grammar] = None,
697
698
699
700
701
702
703
704
705
706
707
708
709
710
    ) -> AsyncIterator[StreamResponse]:
        """
        Given a prompt, generate the following stream of tokens asynchronously

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
711
712
713
714
            frequency_penalty (`float`):
                The parameter for frequency penalty. 1.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
715
716
717
718
719
720
721
722
723
724
725
726
727
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
728
729
730
731
732
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
733
            watermark (`bool`):
734
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
Nicolas Patry's avatar
Nicolas Patry committed
735
736
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
737
738
739
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
740
741
742
743
744
745

        Returns:
            AsyncIterator[StreamResponse]: stream of generated tokens
        """
        # Validate parameters
        parameters = Parameters(
746
            best_of=None,
747
            details=True,
748
            decoder_input_details=False,
749
750
751
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
752
            frequency_penalty=frequency_penalty,
753
754
755
756
757
758
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
759
760
            truncate=truncate,
            typical_p=typical_p,
761
            watermark=watermark,
Nicolas Patry's avatar
Nicolas Patry committed
762
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
763
            grammar=grammar,
764
765
766
        )
        request = Request(inputs=prompt, stream=True, parameters=parameters)

767
768
769
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
            async with session.post(self.base_url, json=request.dict()) as resp:
                if resp.status != 200:
                    raise parse_error(resp.status, await resp.json())

                # Parse ServerSentEvents
                async for byte_payload in resp.content:
                    # Skip line
                    if byte_payload == b"\n":
                        continue

                    payload = byte_payload.decode("utf-8")

                    # Event data
                    if payload.startswith("data:"):
                        # Decode payload
                        json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
                        # Parse payload
                        try:
                            response = StreamResponse(**json_payload)
                        except ValidationError:
                            # If we failed to parse the payload, then it is an error payload
                            raise parse_error(resp.status, json_payload)
                        yield response