convert.py 4.2 KB
Newer Older
1
import datetime
2
import torch
3
import os
4
5
6

from loguru import logger
from pathlib import Path
7
8
9
from safetensors.torch import save_file, load_file, _find_shared_tensors, _is_complete
from typing import List, Dict
from collections import defaultdict
10
11


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
def _remove_duplicate_names(
    state_dict: Dict[str, torch.Tensor],
    *,
    preferred_names: List[str] = None,
    discard_names: List[str] = None,
) -> Dict[str, List[str]]:
    if preferred_names is None:
        preferred_names = []
    preferred_names = set(preferred_names)
    if discard_names is None:
        discard_names = []
    discard_names = set(discard_names)

    shareds = _find_shared_tensors(state_dict)
    to_remove = defaultdict(list)
    for shared in shareds:
        complete_names = set(
            [name for name in shared if _is_complete(state_dict[name])]
        )
        if not complete_names:
xiaobin's avatar
xiaobin committed
32
33
34
35
36
37
38
39
40
            if len(shared) == 1:
                # Force contiguous
                name = list(shared)[0]
                state_dict[name] = state_dict[name].clone()
                complete_names = {name}
            else:
                raise RuntimeError(
                    f"Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue."
                )
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

        keep_name = sorted(list(complete_names))[0]

        # Mecanism to preferentially select keys to keep
        # coming from the on-disk file to allow
        # loading models saved with a different choice
        # of keep_name
        preferred = complete_names.difference(discard_names)
        if preferred:
            keep_name = sorted(list(preferred))[0]

        if preferred_names:
            preferred = preferred_names.intersection(complete_names)
            if preferred:
                keep_name = sorted(list(preferred))[0]
        for name in sorted(shared):
            if name != keep_name:
                to_remove[keep_name].append(name)
    return to_remove


def convert_file(pt_file: Path, sf_file: Path, discard_names: List[str]):
63
64
    """
    Convert a pytorch file to a safetensors file
65
    This will remove duplicate tensors from the file.
66

67
68
69
70
71
72
73
    Unfortunately, this might not respect *transformers* convention.
    Forcing us to check for potentially different keys during load when looking
    for specific tensors (making tensor sharing explicit).
    """
    loaded = torch.load(pt_file, map_location="cpu")
    if "state_dict" in loaded:
        loaded = loaded["state_dict"]
74
    to_removes = _remove_duplicate_names(loaded, discard_names=discard_names)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    metadata = {"format": "pt"}
    for kept_name, to_remove_group in to_removes.items():
        for to_remove in to_remove_group:
            if to_remove not in metadata:
                metadata[to_remove] = kept_name
            del loaded[to_remove]
    # Force tensors to be contiguous
    loaded = {k: v.contiguous() for k, v in loaded.items()}

    dirname = os.path.dirname(sf_file)
    os.makedirs(dirname, exist_ok=True)
    save_file(loaded, sf_file, metadata=metadata)
    reloaded = load_file(sf_file)
    for k in loaded:
        pt_tensor = loaded[k]
        sf_tensor = reloaded[k]
        if not torch.equal(pt_tensor, sf_tensor):
            raise RuntimeError(f"The output tensors do not match for key {k}")
94
95


96
def convert_files(pt_files: List[Path], sf_files: List[Path], discard_names: List[str]):
97
    assert len(pt_files) == len(sf_files)
98

99
    N = len(pt_files)
100
    # We do this instead of using tqdm because we want to parse the logs with the launcher
101
102

    for i, (pt_file, sf_file) in enumerate(zip(pt_files, sf_files)):
103
104
105
106
107
108
109
110
        # Skip blacklisted files
        if (
            "arguments" in pt_file.name
            or "args" in pt_file.name
            or "training" in pt_file.name
        ):
            continue

111
        start = datetime.datetime.now()
112
        convert_file(pt_file, sf_file, discard_names)
113
114
        elapsed = datetime.datetime.now() - start
        logger.info(f"Convert: [{i + 1}/{N}] -- Took: {elapsed}")