mamba.py 26 KB
Newer Older
drbh's avatar
drbh committed
1
2
3
4
import torch
import torch.distributed
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from typing import Optional
5
import os
drbh's avatar
drbh committed
6
7
8
from text_generation_server.models.custom_modeling.mamba_modeling import (
    MambaConfig,
)
9
from loguru import logger
drbh's avatar
drbh committed
10
11
12
13
14
15
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)
Nicolas Patry's avatar
Nicolas Patry committed
16
from text_generation_server.models.globals import ENABLE_CUDA_GRAPHS, MEM_POOL
drbh's avatar
drbh committed
17
import time
18
from text_generation_server.models.custom_modeling.mamba_modeling import MambaModel, InferenceParams
drbh's avatar
drbh committed
19
20
21
22
23
24
25
26
27
28
29
from text_generation_server.models import Model
from typing import Any, List, Optional, Tuple, Type, Dict
from text_generation_server.models.types import (
    Batch,
    Tokens,
    Generation,
    GeneratedText,
)
from text_generation_server.utils.tokens import batch_top_tokens, Sampling
from dataclasses import dataclass
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

def new_inference_params(n_blocks: int, batch_size: int, d_inner: int, d_conv: int, d_state: int, seqlen_offset: int, dtype: torch.dtype, device: torch.device):
    max_seqlen = 0
    conv_states = torch.zeros(
        (n_blocks,
        batch_size,
        d_inner,
        d_conv,),
        device=device,
        dtype=dtype,
    )
    ssm_states = torch.zeros(
        (n_blocks,
        batch_size,
        d_inner,
        d_state,),
        device=device,
        dtype=dtype,
    )
    inference_params = InferenceParams(
        max_seqlen=max_seqlen,
        max_batch_size=batch_size,
        seqlen_offset=seqlen_offset,
        conv_states=conv_states,
        ssm_states=ssm_states,

    )
    return inference_params
drbh's avatar
drbh committed
58

59

drbh's avatar
drbh committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
@dataclass
class MambaBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
    requests_idx_mapping: Dict[int, int]

    # Decoder values
    input_ids: torch.Tensor

    # All tokens
    all_input_ids: List[torch.Tensor]

    # Lengths of all generations present in the batch
    input_lengths: List[int]
    prefix_offsets: List[int]
    read_offsets: List[int]

    # Generation helpers
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]
    top_n_tokens: List[int]
    top_n_tokens_tensor: torch.Tensor

    # Metadata used for padding
    max_input_length: int
    padding_right_offset: int

    # Maximum number of tokens this batch will grow to
    max_tokens: int

    # Past metadata
    keys_head_dim_last: bool = True

    # Inference params
    inference_params: Optional[Dict[str, Any]] = None

    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
            id=self.batch_id,
            request_ids=[r.id for r in self.requests],
            size=len(self),
            max_tokens=self.max_tokens,
        )
103

drbh's avatar
drbh committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "MambaBatch":
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        prefix_offsets = []
        read_offsets = []
        requests_idx_mapping = {}

        # Parse batch
        max_truncation = 0
        padding_right_offset = 0
        max_decode_tokens = 0
        for i, r in enumerate(pb.requests):
            requests_idx_mapping[r.id] = i
            inputs.append(r.inputs)
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(r.top_n_tokens)
            max_truncation = max(max_truncation, r.truncate)
            max_decode_tokens += stopping_criteria.max_new_tokens
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
            )

        tokenized_inputs = tokenizer(
            inputs,
            return_tensors="pt",
            padding=True,
            return_token_type_ids=False,
            truncation=True,
            max_length=max_truncation,
        ).to(device)
        for _ in pb.requests:
            input_len = tokenized_inputs["input_ids"].shape[1]
            prefix_offsets.append(input_len - 5)
            read_offsets.append(input_len)

        input_lengths = tokenized_inputs["attention_mask"].sum(1)
        max_input_length = input_lengths.max()
        input_ids = tokenized_inputs["input_ids"]
        all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )
        max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            # past_input_ids=None,
            all_input_ids=list(all_input_ids),
            input_lengths=input_lengths.tolist(),
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length.item(),
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )

    def filter(self, request_ids: List[int]) -> Optional["MambaBatch"]:
        if len(request_ids) == 0:
            raise ValueError("Batch must have at least one request")
        if len(request_ids) == len(self):
            return self

        keep_indices = []

        # New values after filtering
        requests_idx_mapping = {}
        requests = []
        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        max_input_length = 0

        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []

        total_remaining_decode_tokens = 0
        new_padding_right_offset = 0

        indices = []
        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
            requests_idx_mapping[request_id] = i
            keep_indices.append(idx)

            requests.append(self.requests[idx])
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
            all_input_ids.append(self.all_input_ids[idx])

            request_input_length = self.input_lengths[idx]
            input_lengths.append(request_input_length)
            max_input_length = max(max_input_length, request_input_length)
            indices.append(idx)

            next_token_choosers.append(self.next_token_choosers[idx])
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(self.top_n_tokens[idx])
            remaining_decode_tokens = (
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
            total_remaining_decode_tokens += remaining_decode_tokens
            new_padding_right_offset = max(
                new_padding_right_offset, remaining_decode_tokens
            )
230

drbh's avatar
drbh committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        # Apply indices to input_ids, attention mask, past key values and other items that need to be cached
        input_ids = self.input_ids[keep_indices]

        top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
        max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens

        self.requests = requests
        self.requests_idx_mapping = requests_idx_mapping
        self.input_ids = input_ids
        self.all_input_ids = all_input_ids
        self.input_lengths = input_lengths
        self.prefix_offsets = prefix_offsets
        self.read_offsets = read_offsets
        self.next_token_choosers = next_token_choosers
        self.stopping_criterias = stopping_criterias
        self.top_n_tokens = top_n_tokens
        self.top_n_tokens_tensor = top_n_tokens_tensor
        self.max_input_length = max_input_length
        self.padding_right_offset = new_padding_right_offset
        self.max_tokens = max_tokens

252
        # TODO
drbh's avatar
drbh committed
253
        # Kept it simple by just updating the state, maybe updating the other CPU values is necessary.
254
255
        self.inference_params.conv_states = self.inference_params.conv_states[:, indices]
        self.inference_params.ssm_states = self.inference_params.ssm_states[:, indices]
drbh's avatar
drbh committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        return self

    @classmethod
    def concatenate(cls, batches: List["MambaBatch"]) -> "MambaBatch":
        # Used for padding
        total_batch_size = 0
        max_input_length = 0
        padding_right_offset = 0
        for batch in batches:
            total_batch_size += len(batch)
            max_input_length = max(max_input_length, batch.max_input_length)
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)

        # Batch attributes
        requests = []
        requests_idx_mapping = {}
        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        max_tokens = 0
        max_seqlen = 0
        seqlen_offset = 0

283
284
285
286
287
288
289
290
        (n_blocks, _, d_inner, d_conv) = (
            batches[0].inference_params.conv_states.shape
        )
        (_, _, _, d_state) = batches[0].inference_params.ssm_states.shape
        dtype = batches[0].inference_params.conv_states.dtype
        device = batches[0].inference_params.conv_states.device
        inference_params = new_inference_params(n_blocks=n_blocks, batch_size=total_batch_size, d_state=d_state, d_conv=d_conv, d_inner=d_inner, seqlen_offset=seqlen_offset, device=device, dtype=dtype)

drbh's avatar
drbh committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        # Batch tensors
        input_ids = None
        top_n_tokens_tensor = None

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
            all_input_ids.extend(batch.all_input_ids)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)
            top_n_tokens.extend(batch.top_n_tokens)

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + start_index

            # Slicing end index for this batch
            end_index = start_index + len(batch)

            # Create empty tensor
            # input_ids is always of shape [batch_size, 1]
            # We do not need to pad it
            if input_ids is None:
                input_ids = batch.input_ids.new_empty((total_batch_size, 1))
            # Copy to correct indices
            input_ids[start_index:end_index] = batch.input_ids

            if top_n_tokens_tensor is None:
                top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
                    total_batch_size,
                )
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor

            # Add eventual padding tokens that were added while concatenating
            max_tokens += batch.max_tokens + (
                max_input_length - batch.max_input_length
            ) * len(batch)

337
338
339
            inference_params.max_seqlen = max(inference_params.max_seqlen, batch.inference_params.max_seqlen)
            assert batch.inference_params.seqlen_offset != 0, "Invalid seqlen offset"
            inference_params.seqlen_offset = max(inference_params.seqlen_offset, batch.inference_params.seqlen_offset)
drbh's avatar
drbh committed
340
341


342
343
            inference_params.conv_states[:, start_index:end_index] = batch.inference_params.conv_states
            inference_params.ssm_states[:, start_index:end_index] = batch.inference_params.ssm_states
drbh's avatar
drbh committed
344

345
            start_index = end_index
drbh's avatar
drbh committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            all_input_ids=all_input_ids,
            input_lengths=input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length,
            padding_right_offset=padding_right_offset,
            keys_head_dim_last=batches[0].keys_head_dim_last,
            max_tokens=max_tokens,
364
            inference_params=inference_params,
drbh's avatar
drbh committed
365
366
367
368
369
        )

    def __len__(self):
        return len(self.requests)

370

drbh's avatar
drbh committed
371
372
373
374
375
376
377
378
379
class Mamba(Model):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
Nicolas Patry's avatar
Nicolas Patry committed
380
381
382
        self.process_group, _rank, world_size = initialize_torch_distributed()
        if world_size > 1:
            raise RuntimeError("Mamba does not support Tensor Parallelism (TP)")
383
        self.cuda_graphs = {}
drbh's avatar
drbh committed
384
385
        if torch.cuda.is_available():
            device = torch.device("cuda")
386
387
388
389
            # Bf16 is important. In f16 accumulations in the matmul are causing
            # differences while the server is under load.
            # This is detectable by the integration load test
            dtype = torch.bfloat16 if dtype is None else dtype
drbh's avatar
drbh committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        else:
            if quantize:
                raise ValueError("quantization is not available on CPU")

            device = torch.device("cpu")
            dtype = torch.float32 if dtype is None else dtype

        tokenizer = AutoTokenizer.from_pretrained(
            "EleutherAI/gpt-neox-20b",
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        config = MambaConfig.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )

        tokenizer.bos_token_id = config.bos_token_id
        tokenizer.eos_token_id = config.eos_token_id
        tokenizer.pad_token = tokenizer.eos_token

        config.quantize = quantize
        torch.distributed.barrier(group=self.process_group)
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        model = MambaModel(config, weights)
        torch.distributed.barrier(group=self.process_group)
        super(Mamba, self).__init__(
            model=model,
            tokenizer=tokenizer,
            requires_padding=True,
            dtype=dtype,
            device=device,
        )

    @property
    def batch_type(self) -> Type[MambaBatch]:
        return MambaBatch

    def warmup(self, batch) -> Optional[int]:
        # TODO: implement warmup for Mamba if needed
Nicolas Patry's avatar
Nicolas Patry committed
432
        if ENABLE_CUDA_GRAPHS:
433
434
435
436
437
438
439
440
441
            if self.speculate is None or self.speculate == 0:
                try:
                    logger.info("Experimental support for Cuda Graphs is enabled")
                    # Warmup cuda graphs
                    for bs in [1, 2, 4] + [8 * i for i in range(1, 9)]:
                        self.cuda_graph_warmup(bs)
                except Exception:
                    logger.exception(f"Decode cuda graph warmup failed")

drbh's avatar
drbh committed
442
        return None
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    def cuda_graph_warmup(self, batch_size: int):
        input_ids = torch.zeros((batch_size, 1), dtype=torch.int64, device=self.device)
        n_blocks = len(self.model.blocks)

        d_state = self.model.config.d_state
        d_conv = self.model.config.d_conv
        # Inner takes the expand multiplication
        d_inner = self.model.config.d_inner

        # Important seqlen_offset to go through the update mecanism with the state
        seqlen_offset = 1
        inference_params = new_inference_params(n_blocks=n_blocks, batch_size=batch_size, d_state=d_state, d_conv=d_conv, d_inner=d_inner, seqlen_offset=seqlen_offset, device=self.device, dtype=self.dtype)

        graph = torch.cuda.CUDAGraph()

        torch.cuda.synchronize()
        # Run once outside to warmup
        self.model.forward(
            input_ids=input_ids,
            inference_params=inference_params
        )
        torch.cuda.synchronize()

        with torch.cuda.graph(graph, pool=MEM_POOL):
            logits = self.model.forward(
                input_ids=input_ids,
                inference_params=inference_params
            )
        torch.cuda.synchronize()
        graph_dict = {
            "input_ids": input_ids,
            "inference_params": inference_params,
            "graph": graph,
            "logits": logits
        }
        self.cuda_graphs[batch_size] = graph_dict

drbh's avatar
drbh committed
481
482
483
    def forward(
        self,
        input_ids: torch.Tensor,
484
        inference_params: Any
drbh's avatar
drbh committed
485
    ) -> Tuple[torch.Tensor, torch.Tensor]:
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        bs = input_ids.shape[0]
        padded_bs = bs
        if bs == 3:
            padded_bs = 4
        elif 3 < bs <= 8:
            padded_bs = 8
        elif bs > 8:
            padded_bs = (bs + 7) // 8 * 8

        # Try to find an associated cuda graph
        cuda_graph = self.cuda_graphs.get(padded_bs, None)
        is_prefill = inference_params is None or inference_params.seqlen_offset == 0

        if is_prefill or cuda_graph is None:
            return self.model(
                input_ids,
                inference_params=inference_params,
            )

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
        cuda_graph["input_ids"][: bs] = input_ids
        cuda_graph["inference_params"].conv_states[:, : bs] = inference_params.conv_states
        cuda_graph["inference_params"].ssm_states[:, : bs] = inference_params.ssm_states

        # Replay the graph
        cuda_graph["graph"].replay()

        inference_params.conv_states.copy_(cuda_graph["inference_params"].conv_states[:, :bs])
        inference_params.ssm_states.copy_(cuda_graph["inference_params"].ssm_states[:, :bs])

        # Slice output to the correct shape
        return cuda_graph["logits"][:bs]
drbh's avatar
drbh committed
519
520
521

    def generate_token(self, batch) -> Tuple[List[Any], Optional[Any], Tuple[int, int]]:
        start = time.time_ns()
522
523
524
        input_ids = (
            batch.input_ids
        )  # batch.past_input_ids if batch.past_input_ids is not None else batch.input_ids
drbh's avatar
drbh committed
525

526
        batch_size, max_seqlen = input_ids.shape
drbh's avatar
drbh committed
527
        # Inference params
528

drbh's avatar
drbh committed
529
        if batch.inference_params is None:
530
531
532
533
534
535
536
            # 0 is important here
            seqlen_offset = 0 
            n_blocks = len(self.model.blocks)
            d_state = self.model.config.d_state
            d_conv = self.model.config.d_conv
            d_inner = self.model.config.d_inner
            inference_params = new_inference_params(n_blocks=n_blocks, batch_size=batch_size, d_state=d_state, d_conv=d_conv, d_inner=d_inner, seqlen_offset=seqlen_offset, device=self.device, dtype=self.dtype)
drbh's avatar
drbh committed
537
            batch.inference_params = inference_params
538

drbh's avatar
drbh committed
539
        # Forward pass
540
541
        logits = self.forward(
            input_ids, inference_params=batch.inference_params
542
        )
drbh's avatar
drbh committed
543

544
545

        # batch.inference_params = new_inference_params
drbh's avatar
drbh committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        # Results
        generations: List[Generation] = []
        stopped = True

        # Speculation is not active for causal
        accepted_ids = torch.ones_like(batch.input_ids)[:, 0]
        batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
            batch.top_n_tokens,
            batch.top_n_tokens_tensor,
            torch.log_softmax(logits[:, -1], -1),
            accepted_ids,
        )

        start_decode = time.time_ns()

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.prefix_offsets,
            batch.read_offsets,
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
            batch.top_n_tokens,
            batch_top_token_ids,
            batch_top_token_logprobs,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            prefix_offset,
            read_offset,
            logits,
            next_token_chooser,
            stopping_criteria,
            all_input_ids,
            top_n_tokens,
            top_token_ids,
            top_token_logprobs,
        ) in enumerate(iterator):
            # Select next token
            next_token_id, logprobs = next_token_chooser(
                all_input_ids.view(1, -1), logits[-1:, :]
            )

            # Append next token to all tokens
            all_input_ids = torch.cat([all_input_ids, next_token_id])
            new_input_length = input_length + 1

            # Generated token
            next_token_logprob = logprobs[-1, next_token_id]
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_text, prefix_offset, read_offset = self.decode_token(
                all_input_ids[:, 0], prefix_offset, read_offset
            )

            # Evaluate stopping criteria
            stop, reason = stopping_criteria(
                next_token_id_squeezed,
                next_token_text,
            )

            if not stop:
                stopped = False

            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
                    output_text, _, _ = self.decode_token(
                        all_input_ids[:, 0],
                        prefix_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens
                        - 1,
625
626
                        read_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens,
drbh's avatar
drbh committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
                        skip_special_tokens=True,
                    )
                    # Get seed
                    if isinstance(next_token_chooser.choice, Sampling):
                        seed = next_token_chooser.choice.seed
                    else:
                        seed = None

                    generated_text = GeneratedText(
                        output_text, stopping_criteria.current_tokens, reason, seed
                    )
                else:
                    generated_text = None

                if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
                    # Remove generated token to only have prefill and add nan for first prompt token
                    prefill_logprobs = [float("nan")] + torch.log_softmax(
                        logits, -1
                    ).gather(1, all_input_ids[1:]).squeeze(1)[
                        -new_input_length:-1
                    ].tolist()
                    prefill_token_ids = all_input_ids[-new_input_length:-1]
                    prefill_texts = self.tokenizer.batch_decode(
                        prefill_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
                    prefill_tokens = Tokens(
                        prefill_token_ids,
                        prefill_logprobs,
                        prefill_texts,
                        is_special=[],
                    )
                else:
                    prefill_tokens = None

                if top_n_tokens > 0:
                    toptoken_texts = self.tokenizer.batch_decode(
                        top_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
                    special_toptokens = [
                        token_id in self.all_special_ids for token_id in top_token_ids
                    ]
                    top_tokens = Tokens(
                        top_token_ids,
                        top_token_logprobs,
                        toptoken_texts,
                        special_toptokens,
                    )
                else:
                    top_tokens = None

                generation = Generation(
                    request.id,
                    prefill_tokens,
                    Tokens(
                        [next_token_id_squeezed],
                        [next_token_logprob],
                        [next_token_text],
                        [next_token_id_squeezed.item() in self.all_special_ids],
                    ),
                    generated_text,
                    top_tokens,
                )

                generations.append(generation)

                # Update values
                batch.input_ids[i, 0] = next_token_id
                batch.all_input_ids[i] = all_input_ids
                batch.input_lengths[i] = new_input_length
                batch.prefix_offsets[i] = prefix_offset
                batch.read_offsets[i] = read_offset
                batch.max_input_length = max(batch.max_input_length, new_input_length)

        # We finished all generations in the batch; there is no next batch
        if stopped:
            forward_ns = start_decode - start
            decode_ns = time.time_ns() - start_decode
            return generations, None, (forward_ns, decode_ns)

        # Slice unused values from prefill
        batch.input_ids = batch.input_ids[:, :1]

        forward_ns = start_decode - start
        decode_ns = time.time_ns() - start_decode
        return generations, batch, (forward_ns, decode_ns)