flash_cohere.py 2.37 KB
Newer Older
OlivierDehaene's avatar
OlivierDehaene committed
1
2
3
4
5
import torch
import torch.distributed

from opentelemetry import trace
from typing import Optional
6
from transformers import AutoTokenizer
OlivierDehaene's avatar
OlivierDehaene committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
    FlashCohereForCausalLM,
    CohereConfig,
)
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)

tracer = trace.get_tracer(__name__)


class FlashCohere(FlashCausalLM):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        use_medusa: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.bfloat16 if dtype is None else dtype
        else:
            raise NotImplementedError("FlashCohere is only available on GPU")

39
        tokenizer = AutoTokenizer.from_pretrained(
OlivierDehaene's avatar
OlivierDehaene committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
            use_fast=True,
            from_slow=False,
        )

        config = CohereConfig.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
        config.use_medusa = use_medusa

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        if config.quantize in ["gptq", "awq"]:
            weights._set_gptq_params(model_id, revision)

        model = FlashCohereForCausalLM(config, weights)

        torch.distributed.barrier(group=self.process_group)
        super(FlashCohere, self).__init__(
            model=model,
            tokenizer=tokenizer,
            num_layers=len(model.model.layers),
            num_kv_heads=model.model.num_key_value_heads,
            head_size=model.model.head_size,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
        )