server.rs 27.6 KB
Newer Older
1
use crate::health::Health;
2
/// HTTP Server logic
3
4
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
5
use crate::{
6
    BestOfSequence, CompatGenerateRequest, Details, ErrorResponse, FinishReason,
7
    GenerateParameters, GenerateRequest, GenerateResponse, HubModelInfo, Infer, Info, PrefillToken,
8
    StreamDetails, StreamResponse, Token, Validation,
9
};
Olivier Dehaene's avatar
Olivier Dehaene committed
10
use axum::extract::Extension;
11
use axum::http::{HeaderMap, Method, StatusCode};
12
use axum::response::sse::{Event, KeepAlive, Sse};
13
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
14
use axum::routing::{get, post};
15
use axum::{http, Json, Router};
16
use axum_tracing_opentelemetry::opentelemetry_tracing_layer;
17
use futures::stream::StreamExt;
18
use futures::Stream;
19
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
20
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
21
use std::net::SocketAddr;
22
23
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
24
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
25
use tokenizers::Tokenizer;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
26
use tokio::signal;
Olivier Dehaene's avatar
Olivier Dehaene committed
27
use tokio::time::Instant;
28
use tower_http::cors::{AllowOrigin, CorsLayer};
29
use tracing::{info_span, instrument, Instrument};
30
31
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/",
    request_body = CompatGenerateRequest,
    responses(
        (status = 200, description = "See /generate or /generate_stream"),
        (status = 424, description = "Generation Error", body = ErrorResponse,
            example = json ! ({"error": "Request failed during generation"})),
        (status = 429, description = "Model is overloaded", body = ErrorResponse,
            example = json ! ({"error": "Model is overloaded"})),
        (status = 422, description = "Input validation error", body = ErrorResponse,
            example = json ! ({"error": "Input validation error"})),
        (status = 500, description = "Incomplete generation", body = ErrorResponse,
            example = json ! ({"error": "Incomplete generation"})),
    )
)]
51
52
#[instrument(skip(infer))]
async fn compat_generate(
53
    default_return_full_text: Extension<bool>,
54
55
    infer: Extension<Infer>,
    req: Json<CompatGenerateRequest>,
56
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
57
58
59
60
61
62
63
    let mut req = req.0;

    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
        req.parameters.return_full_text = Some(default_return_full_text.0)
    }

64
65
66
67
68
69
70
71
72
73
74
75
    // switch on stream
    if req.stream {
        Ok(generate_stream(infer, Json(req.into()))
            .await
            .into_response())
    } else {
        let (headers, generation) = generate(infer, Json(req.into())).await?;
        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(vec![generation.0])).into_response())
    }
}

76
77
78
79
80
81
82
83
/// Text Generation Inference endpoint info
#[utoipa::path(
    get,
    tag = "Text Generation Inference",
    path = "/info",
    responses((status = 200, description = "Served model info", body = Info))
)]
#[instrument]
84
85
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
86
87
}

88
89
90
91
92
93
94
95
96
97
98
#[utoipa::path(
    get,
    tag = "Text Generation Inference",
    path = "/health",
    responses(
        (status = 200, description = "Everything is working fine"),
        (status = 503, description = "Text generation inference is down", body = ErrorResponse,
            example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
    )
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
99
/// Health check method
100
101
102
103
104
105
106
107
108
109
110
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
111
112
}

113
114
/// Generate tokens
#[utoipa::path(
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    post,
    tag = "Text Generation Inference",
    path = "/generate",
    request_body = GenerateRequest,
    responses(
        (status = 200, description = "Generated Text", body = GenerateResponse),
        (status = 424, description = "Generation Error", body = ErrorResponse,
            example = json ! ({"error": "Request failed during generation"})),
        (status = 429, description = "Model is overloaded", body = ErrorResponse,
            example = json ! ({"error": "Model is overloaded"})),
        (status = 422, description = "Input validation error", body = ErrorResponse,
            example = json ! ({"error": "Input validation error"})),
        (status = 500, description = "Incomplete generation", body = ErrorResponse,
            example = json ! ({"error": "Incomplete generation"})),
    )
130
)]
131
#[instrument(
132
    skip(infer),
133
134
135
136
137
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
138
        time_per_token,
139
        seed,
140
141
    )
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
142
async fn generate(
143
    infer: Extension<Infer>,
Olivier Dehaene's avatar
Olivier Dehaene committed
144
    req: Json<GenerateRequest>,
145
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
146
    let span = tracing::Span::current();
147
    let start_time = Instant::now();
148
    metrics::increment_counter!("tgi_request_count");
149

150
    let compute_characters = req.0.inputs.chars().count();
151
152
153
154
155
    let mut add_prompt = None;
    if req.0.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.0.inputs.clone());
    }

156
    let details = req.0.parameters.details;
157
158

    // Inference
159
160
161
162
163
164
165
    let (response, best_of_responses) = match req.0.parameters.best_of {
        Some(best_of) if best_of > 1 => {
            let (response, best_of_responses) = infer.generate_best_of(req.0, best_of).await?;
            (response, Some(best_of_responses))
        }
        _ => (infer.generate(req.0).await?, None),
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
166

OlivierDehaene's avatar
OlivierDehaene committed
167
168
    // Token details
    let details = match details {
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
204
205
206
        false => None,
    };

207
208
209
210
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
211
212
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
213

214
215
216
217
218
219
220
221
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

222
223
    // Headers
    let mut headers = HeaderMap::new();
224
225
226
227
228
229
230
231
232
    headers.insert("x-compute-type", "gpu+optimized".parse().unwrap());
    headers.insert(
        "x-compute-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
233
234
235
236
237
238
239
240
241
242
243
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
244
    );
245
246
247
248
249
250
251
252
253
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );

254
255
    // Metrics
    metrics::increment_counter!("tgi_request_success");
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
270
271
272
273
274
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
275
    // Send response
276
277
278
279
280
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

281
282
    tracing::info!("Output: {}", output_text);

283
    let response = GenerateResponse {
284
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
285
        details,
286
    };
287
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
288
289
}

Yannic Kilcher's avatar
Yannic Kilcher committed
290
/// Generate a stream of token using Server-Sent Events
291
#[utoipa::path(
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    post,
    tag = "Text Generation Inference",
    path = "/generate_stream",
    request_body = GenerateRequest,
    responses(
        (status = 200, description = "Generated Text", body = StreamResponse,
            content_type = "text/event-stream"),
        (status = 424, description = "Generation Error", body = ErrorResponse,
            example = json ! ({"error": "Request failed during generation"}),
            content_type = "text/event-stream"),
        (status = 429, description = "Model is overloaded", body = ErrorResponse,
            example = json ! ({"error": "Model is overloaded"}),
            content_type = "text/event-stream"),
        (status = 422, description = "Input validation error", body = ErrorResponse,
            example = json ! ({"error": "Input validation error"}),
            content_type = "text/event-stream"),
        (status = 500, description = "Incomplete generation", body = ErrorResponse,
            example = json ! ({"error": "Incomplete generation"}),
            content_type = "text/event-stream"),
    )
312
)]
313
314
315
316
317
318
319
#[instrument(
    skip(infer),
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
320
321
        time_per_token,
        seed,
322
323
324
325
326
    )
)]
async fn generate_stream(
    infer: Extension<Infer>,
    req: Json<GenerateRequest>,
327
328
329
330
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
331
332
    let span = tracing::Span::current();
    let start_time = Instant::now();
333
    metrics::increment_counter!("tgi_request_count");
334

335
336
337
338
339
340
341
342
343
    let compute_characters = req.0.inputs.chars().count();

    let mut headers = HeaderMap::new();
    headers.insert("x-compute-type", "gpu+optimized".parse().unwrap());
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );

344
345
346
347
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
348
349
350
351
352

        let mut add_prompt = None;
        if req.0.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.0.inputs.clone());
        }
353
354
        let details = req.0.parameters.details;

355
356
357
        let best_of = req.0.parameters.best_of.unwrap_or(1);
        if best_of == 1 {
            match infer.generate_stream(req.0).instrument(info_span!(parent: &span, "async_stream")).await {
358
359
                // Keep permit as long as generate_stream lives
                Ok((_permit, mut response_stream)) => {
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
                                    InferStreamResponse::Token(token) => {
                                        // StreamResponse
                                        let stream_token = StreamResponse {
                                            token,
                                            generated_text: None,
                                            details: None,
                                        };

                                        yield Ok(Event::default().json_data(stream_token).unwrap())
377
                                    }
378
379
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
380
                                        token,
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
                                        generated_text,
                                        start,
                                        queued,
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
412
413
414
415
416
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
417
418
419
420
421
422
423
424
425
426
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

427
428
                                        tracing::info!(parent: &span, "Output: {}", output_text);

429
430
431
432
433
434
435
436
437
                                        let stream_token = StreamResponse {
                                            token,
                                            generated_text: Some(output_text),
                                            details
                                        };

                                        yield Ok(Event::default().json_data(stream_token).unwrap());
                                        break;
                                    }
438
439
                                }
                            }
440
441
442
443
444
445
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
446
447
                        }
                    }
448
449
450
451
452
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
453
                }
454
455
456
457
458
459
460
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
461
                yield Ok(Event::from(err));
462
            }
463
464
465
        } else {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
466
            tracing::error!("{err}");
467
            yield Ok(Event::from(err));
468
469
470
        }
    };

471
    (headers, Sse::new(stream).keep_alive(KeepAlive::default()))
472
473
}

474
475
/// Prometheus metrics scrape endpoint
#[utoipa::path(
476
477
478
479
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
480
481
482
483
484
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
485
486
487
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
488
489
    model_info: HubModelInfo,
    shard_info: ShardInfo,
490
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
491
    max_concurrent_requests: usize,
492
    max_best_of: usize,
493
    max_stop_sequences: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
494
    max_input_length: usize,
495
    max_total_tokens: usize,
496
497
    waiting_served_ratio: f32,
    max_batch_total_tokens: u32,
498
    max_waiting_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
499
    client: ShardedClient,
500
    tokenizer: Option<Tokenizer>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
501
502
    validation_workers: usize,
    addr: SocketAddr,
503
    allow_origin: Option<AllowOrigin>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
504
) {
505
506
507
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
        paths(
            get_model_info,
            compat_generate,
            generate,
            generate_stream,
            metrics,
        ),
        components(
            schemas(
                Info,
                CompatGenerateRequest,
                GenerateRequest,
                GenerateParameters,
                PrefillToken,
                Token,
                GenerateResponse,
                BestOfSequence,
                Details,
                FinishReason,
                StreamResponse,
                StreamDetails,
                ErrorResponse,
            )
        ),
        tags(
            (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
        ),
        info(
            title = "Text Generation Inference",
            license(
                name = "Apache 2.0",
                url = "https://www.apache.org/licenses/LICENSE-2.0"
            )
        )
542
543
544
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
545
    // Create state
546
547
548
    let validation = Validation::new(
        validation_workers,
        tokenizer,
549
        max_best_of,
550
551
552
553
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
    );
554
555
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
556
557
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
558
        validation,
559
560
        waiting_served_ratio,
        max_batch_total_tokens,
561
562
        max_waiting_tokens,
        max_concurrent_requests,
563
        shard_info.requires_padding,
564
        generation_health,
565
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
566

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
595
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
596

597
    // Prometheus handler
598
599
600
601
602
603
604
605
606
607
608
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
609
610
611
612
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

613
614
615
616
617
618
619
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
        validation_workers,
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
638
        docker_label: option_env!("DOCKER_LABEL"),
639
640
    };

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
641
    // Create router
Olivier Dehaene's avatar
Olivier Dehaene committed
642
    let app = Router::new()
643
        .merge(SwaggerUi::new("/docs").url("/api-doc/openapi.json", ApiDoc::openapi()))
644
        // Base routes
645
        .route("/", post(compat_generate))
646
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
647
        .route("/generate", post(generate))
648
        .route("/generate_stream", post(generate_stream))
649
650
651
        // AWS Sagemaker route
        .route("/invocations", post(compat_generate))
        // Base Health route
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
652
        .route("/health", get(health))
653
654
655
656
657
        // Inference API health route
        .route("/", get(health))
        // AWS Sagemaker health route
        .route("/ping", get(health))
        // Prometheus metrics route
658
        .route("/metrics", get(metrics))
659
        .layer(Extension(info))
660
        .layer(Extension(health_ext))
661
662
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
663
        .layer(Extension(prom_handle))
664
665
        .layer(opentelemetry_tracing_layer())
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
666

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
667
    // Run server
Olivier Dehaene's avatar
Olivier Dehaene committed
668
    axum::Server::bind(&addr)
Olivier Dehaene's avatar
Olivier Dehaene committed
669
        .serve(app.into_make_service())
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
670
671
        // Wait until all requests are finished to shut down
        .with_graceful_shutdown(shutdown_signal())
Olivier Dehaene's avatar
Olivier Dehaene committed
672
673
        .await
        .unwrap();
Olivier Dehaene's avatar
Olivier Dehaene committed
674
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
701
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
702
}
703

704
705
706
707
708
709
710
711
712
713
714
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
        let finish_reason = text_generation_client::FinishReason::from_i32(finish_reason).unwrap();
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

715
716
717
718
719
720
721
722
723
724
725
726
727
728
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
729
                error_type: err.error_type().to_string(),
730
731
732
733
734
735
736
737
738
739
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
740
                error_type: err.error_type().to_string(),
741
742
743
744
            })
            .unwrap()
    }
}