client.py 28.5 KB
Newer Older
1
2
3
4
5
import json
import requests

from aiohttp import ClientSession, ClientTimeout
from pydantic import ValidationError
drbh's avatar
drbh committed
6
from typing import Dict, Optional, List, AsyncIterator, Iterator, Union
7
8
9
10
11
12

from text_generation.types import (
    StreamResponse,
    Response,
    Request,
    Parameters,
drbh's avatar
drbh committed
13
    Grammar,
drbh's avatar
drbh committed
14
15
16
17
18
    ChatRequest,
    ChatCompletionChunk,
    ChatComplete,
    Message,
    Tool,
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
)
from text_generation.errors import parse_error


class Client:
    """Client to make calls to a text-generation-inference instance

     Example:

     ```python
     >>> from text_generation import Client

     >>> client = Client("https://api-inference.huggingface.co/models/bigscience/bloomz")
     >>> client.generate("Why is the sky blue?").generated_text
     ' Rayleigh scattering'

     >>> result = ""
     >>> for response in client.generate_stream("Why is the sky blue?"):
     >>>     if not response.token.special:
     >>>         result += response.token.text
     >>> result
    ' Rayleigh scattering'
     ```
    """

    def __init__(
45
46
47
48
49
        self,
        base_url: str,
        headers: Optional[Dict[str, str]] = None,
        cookies: Optional[Dict[str, str]] = None,
        timeout: int = 10,
50
51
52
53
54
55
56
    ):
        """
        Args:
            base_url (`str`):
                text-generation-inference instance base url
            headers (`Optional[Dict[str, str]]`):
                Additional headers
57
58
            cookies (`Optional[Dict[str, str]]`):
                Cookies to include in the requests
59
60
61
62
63
            timeout (`int`):
                Timeout in seconds
        """
        self.base_url = base_url
        self.headers = headers
64
        self.cookies = cookies
65
66
        self.timeout = timeout

drbh's avatar
drbh committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def chat(
        self,
        messages: List[Message],
        frequency_penalty: Optional[float] = None,
        logit_bias: Optional[List[float]] = None,
        logprobs: Optional[bool] = None,
        top_logprobs: Optional[int] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[float] = None,
        stream: bool = False,
        seed: Optional[int] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        tools: Optional[List[Tool]] = None,
        tool_choice: Optional[str] = None,
    ):
        """
        Given a list of messages, generate a response asynchronously

        Args:
            messages (`List[Message]`):
                List of messages
            frequency_penalty (`float`):
                The parameter for frequency penalty. 0.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            logit_bias (`List[float]`):
                Adjust the likelihood of specified tokens
            logprobs (`bool`):
                Include log probabilities in the response
            top_logprobs (`int`):
                Include the `n` most likely tokens at each step
            max_tokens (`int`):
                Maximum number of generated tokens
            n (`int`):
                Generate `n` completions
            presence_penalty (`float`):
                The parameter for presence penalty. 0.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            stream (`bool`):
                Stream the response
            seed (`int`):
                Random sampling seed
            temperature (`float`):
                The value used to module the logits distribution.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation
            tools (`List[Tool]`):
                List of tools to use
            tool_choice (`str`):
                The tool to use

        """
        request = ChatRequest(
            model="tgi",
            messages=messages,
            frequency_penalty=frequency_penalty,
            logit_bias=logit_bias,
            logprobs=logprobs,
            top_logprobs=top_logprobs,
            max_tokens=max_tokens,
            n=n,
            presence_penalty=presence_penalty,
            stream=stream,
            seed=seed,
            temperature=temperature,
            top_p=top_p,
            tools=tools,
            tool_choice=tool_choice,
        )
        if not stream:
            resp = requests.post(
                f"{self.base_url}/v1/chat/completions",
                json=request.dict(),
                headers=self.headers,
                cookies=self.cookies,
                timeout=self.timeout,
            )
            payload = resp.json()
            if resp.status_code != 200:
                raise parse_error(resp.status_code, payload)
            return ChatComplete(**payload)
        else:
            return self._chat_stream_response(request)

    def _chat_stream_response(self, request):
        resp = requests.post(
            f"{self.base_url}/v1/chat/completions",
            json=request.dict(),
            headers=self.headers,
            cookies=self.cookies,
            timeout=self.timeout,
            stream=True,
        )
        # iterate and print stream
        for byte_payload in resp.iter_lines():
            if byte_payload == b"\n":
                continue
            payload = byte_payload.decode("utf-8")
            if payload.startswith("data:"):
                json_payload = json.loads(payload.lstrip("data:").rstrip("\n"))
                try:
                    response = ChatCompletionChunk(**json_payload)
                    yield response
                except ValidationError:
                    raise parse_error(resp.status, json_payload)

175
176
177
178
    def generate(
        self,
        prompt: str,
        do_sample: bool = False,
179
        max_new_tokens: int = 20,
180
        best_of: Optional[int] = None,
181
182
183
184
185
186
187
        repetition_penalty: Optional[float] = None,
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
188
189
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
190
        watermark: bool = False,
191
        decoder_input_details: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
192
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
193
        grammar: Optional[Grammar] = None,
194
195
196
197
198
199
200
201
202
203
204
    ) -> Response:
        """
        Given a prompt, generate the following text

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
205
206
            best_of (`int`):
                Generate best_of sequences and return the one if the highest token logprobs
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
223
224
225
226
227
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
228
            watermark (`bool`):
229
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
230
231
            decoder_input_details (`bool`):
                Return the decoder input token logprobs and ids
Nicolas Patry's avatar
Nicolas Patry committed
232
233
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
234
235
236
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
237
238
239
240
241
242

        Returns:
            Response: generated response
        """
        # Validate parameters
        parameters = Parameters(
243
            best_of=best_of,
244
245
246
247
248
249
250
251
252
253
            details=True,
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
254
255
            truncate=truncate,
            typical_p=typical_p,
256
            watermark=watermark,
257
            decoder_input_details=decoder_input_details,
OlivierDehaene's avatar
OlivierDehaene committed
258
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
259
            grammar=grammar,
260
261
262
263
264
265
266
        )
        request = Request(inputs=prompt, stream=False, parameters=parameters)

        resp = requests.post(
            self.base_url,
            json=request.dict(),
            headers=self.headers,
267
            cookies=self.cookies,
268
269
270
271
272
273
274
275
276
277
278
            timeout=self.timeout,
        )
        payload = resp.json()
        if resp.status_code != 200:
            raise parse_error(resp.status_code, payload)
        return Response(**payload[0])

    def generate_stream(
        self,
        prompt: str,
        do_sample: bool = False,
279
        max_new_tokens: int = 20,
280
281
282
283
284
285
286
        repetition_penalty: Optional[float] = None,
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
287
288
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
289
        watermark: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
290
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
291
        grammar: Optional[Grammar] = None,
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    ) -> Iterator[StreamResponse]:
        """
        Given a prompt, generate the following stream of tokens

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
319
320
321
322
323
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
324
            watermark (`bool`):
325
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
Nicolas Patry's avatar
Nicolas Patry committed
326
327
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
328
329
330
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
331
332
333
334
335
336

        Returns:
            Iterator[StreamResponse]: stream of generated tokens
        """
        # Validate parameters
        parameters = Parameters(
337
            best_of=None,
338
            details=True,
339
            decoder_input_details=False,
340
341
342
343
344
345
346
347
348
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
349
350
            truncate=truncate,
            typical_p=typical_p,
351
            watermark=watermark,
Nicolas Patry's avatar
Nicolas Patry committed
352
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
353
            grammar=grammar,
354
355
356
357
358
359
360
        )
        request = Request(inputs=prompt, stream=True, parameters=parameters)

        resp = requests.post(
            self.base_url,
            json=request.dict(),
            headers=self.headers,
361
            cookies=self.cookies,
362
            timeout=self.timeout,
363
            stream=True,
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        )

        if resp.status_code != 200:
            raise parse_error(resp.status_code, resp.json())

        # Parse ServerSentEvents
        for byte_payload in resp.iter_lines():
            # Skip line
            if byte_payload == b"\n":
                continue

            payload = byte_payload.decode("utf-8")

            # Event data
            if payload.startswith("data:"):
                # Decode payload
                json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
                # Parse payload
                try:
                    response = StreamResponse(**json_payload)
                except ValidationError:
                    # If we failed to parse the payload, then it is an error payload
                    raise parse_error(resp.status_code, json_payload)
                yield response


class AsyncClient:
    """Asynchronous Client to make calls to a text-generation-inference instance

     Example:

     ```python
     >>> from text_generation import AsyncClient

     >>> client = AsyncClient("https://api-inference.huggingface.co/models/bigscience/bloomz")
     >>> response = await client.generate("Why is the sky blue?")
     >>> response.generated_text
     ' Rayleigh scattering'

     >>> result = ""
     >>> async for response in client.generate_stream("Why is the sky blue?"):
     >>>     if not response.token.special:
     >>>         result += response.token.text
     >>> result
    ' Rayleigh scattering'
     ```
    """

    def __init__(
413
414
415
416
417
        self,
        base_url: str,
        headers: Optional[Dict[str, str]] = None,
        cookies: Optional[Dict[str, str]] = None,
        timeout: int = 10,
418
419
420
421
422
423
424
    ):
        """
        Args:
            base_url (`str`):
                text-generation-inference instance base url
            headers (`Optional[Dict[str, str]]`):
                Additional headers
425
426
            cookies (`Optional[Dict[str, str]]`):
                Cookies to include in the requests
427
428
429
430
431
            timeout (`int`):
                Timeout in seconds
        """
        self.base_url = base_url
        self.headers = headers
432
        self.cookies = cookies
433
        self.timeout = ClientTimeout(timeout)
434

drbh's avatar
drbh committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    async def chat(
        self,
        messages: List[Message],
        frequency_penalty: Optional[float] = None,
        logit_bias: Optional[List[float]] = None,
        logprobs: Optional[bool] = None,
        top_logprobs: Optional[int] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[float] = None,
        stream: bool = False,
        seed: Optional[int] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        tools: Optional[List[Tool]] = None,
        tool_choice: Optional[str] = None,
    ) -> Union[ChatComplete, AsyncIterator[ChatCompletionChunk]]:
        """
        Given a list of messages, generate a response asynchronously

        Args:
            messages (`List[Message]`):
                List of messages
            frequency_penalty (`float`):
                The parameter for frequency penalty. 0.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            logit_bias (`List[float]`):
                Adjust the likelihood of specified tokens
            logprobs (`bool`):
                Include log probabilities in the response
            top_logprobs (`int`):
                Include the `n` most likely tokens at each step
            max_tokens (`int`):
                Maximum number of generated tokens
            n (`int`):
                Generate `n` completions
            presence_penalty (`float`):
                The parameter for presence penalty. 0.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            stream (`bool`):
                Stream the response
            seed (`int`):
                Random sampling seed
            temperature (`float`):
                The value used to module the logits distribution.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation
            tools (`List[Tool]`):
                List of tools to use
            tool_choice (`str`):
                The tool to use

        """
        request = ChatRequest(
            model="tgi",
            messages=messages,
            frequency_penalty=frequency_penalty,
            logit_bias=logit_bias,
            logprobs=logprobs,
            top_logprobs=top_logprobs,
            max_tokens=max_tokens,
            n=n,
            presence_penalty=presence_penalty,
            stream=stream,
            seed=seed,
            temperature=temperature,
            top_p=top_p,
            tools=tools,
            tool_choice=tool_choice,
        )
        if not stream:
            return await self._chat_single_response(request)
        else:
            return self._chat_stream_response(request)

    async def _chat_single_response(self, request):
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
            async with session.post(
                f"{self.base_url}/v1/chat/completions", json=request.dict()
            ) as resp:
                payload = await resp.json()
                if resp.status != 200:
                    raise parse_error(resp.status, payload)
                return ChatComplete(**payload)

    async def _chat_stream_response(self, request):
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
            async with session.post(
                f"{self.base_url}/v1/chat/completions", json=request.dict()
            ) as resp:
                async for byte_payload in resp.content:
                    if byte_payload == b"\n":
                        continue
                    payload = byte_payload.decode("utf-8")
                    if payload.startswith("data:"):
                        json_payload = json.loads(payload.lstrip("data:").rstrip("\n"))
                        try:
                            response = ChatCompletionChunk(**json_payload)
                            yield response
                        except ValidationError:
                            raise parse_error(resp.status, json_payload)

542
543
544
545
    async def generate(
        self,
        prompt: str,
        do_sample: bool = False,
546
        max_new_tokens: int = 20,
547
        best_of: Optional[int] = None,
548
549
550
551
552
553
554
        repetition_penalty: Optional[float] = None,
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
555
556
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
557
        watermark: bool = False,
558
        decoder_input_details: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
559
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
560
        grammar: Optional[Grammar] = None,
561
562
563
564
565
566
567
568
569
570
571
    ) -> Response:
        """
        Given a prompt, generate the following text asynchronously

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
572
573
            best_of (`int`):
                Generate best_of sequences and return the one if the highest token logprobs
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
590
591
592
593
594
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
595
            watermark (`bool`):
596
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
597
598
            decoder_input_details (`bool`):
                Return the decoder input token logprobs and ids
Nicolas Patry's avatar
Nicolas Patry committed
599
600
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
601
602
603
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
604
605
606
607

        Returns:
            Response: generated response
        """
drbh's avatar
drbh committed
608

609
610
        # Validate parameters
        parameters = Parameters(
611
            best_of=best_of,
612
            details=True,
613
            decoder_input_details=decoder_input_details,
614
615
616
617
618
619
620
621
622
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
623
624
            truncate=truncate,
            typical_p=typical_p,
625
            watermark=watermark,
Nicolas Patry's avatar
Nicolas Patry committed
626
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
627
            grammar=grammar,
628
629
630
        )
        request = Request(inputs=prompt, stream=False, parameters=parameters)

631
632
633
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
634
635
636
637
638
639
640
641
642
643
644
            async with session.post(self.base_url, json=request.dict()) as resp:
                payload = await resp.json()

                if resp.status != 200:
                    raise parse_error(resp.status, payload)
                return Response(**payload[0])

    async def generate_stream(
        self,
        prompt: str,
        do_sample: bool = False,
645
        max_new_tokens: int = 20,
646
647
648
649
650
651
652
        repetition_penalty: Optional[float] = None,
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
653
654
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
655
        watermark: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
656
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
657
        grammar: Optional[Grammar] = None,
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    ) -> AsyncIterator[StreamResponse]:
        """
        Given a prompt, generate the following stream of tokens asynchronously

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
685
686
687
688
689
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
690
            watermark (`bool`):
691
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
Nicolas Patry's avatar
Nicolas Patry committed
692
693
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
694
695
696
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
697
698
699
700
701
702

        Returns:
            AsyncIterator[StreamResponse]: stream of generated tokens
        """
        # Validate parameters
        parameters = Parameters(
703
            best_of=None,
704
            details=True,
705
            decoder_input_details=False,
706
707
708
709
710
711
712
713
714
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
715
716
            truncate=truncate,
            typical_p=typical_p,
717
            watermark=watermark,
Nicolas Patry's avatar
Nicolas Patry committed
718
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
719
            grammar=grammar,
720
721
722
        )
        request = Request(inputs=prompt, stream=True, parameters=parameters)

723
724
725
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
            async with session.post(self.base_url, json=request.dict()) as resp:
                if resp.status != 200:
                    raise parse_error(resp.status, await resp.json())

                # Parse ServerSentEvents
                async for byte_payload in resp.content:
                    # Skip line
                    if byte_payload == b"\n":
                        continue

                    payload = byte_payload.decode("utf-8")

                    # Event data
                    if payload.startswith("data:"):
                        # Decode payload
                        json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
                        # Parse payload
                        try:
                            response = StreamResponse(**json_payload)
                        except ValidationError:
                            # If we failed to parse the payload, then it is an error payload
                            raise parse_error(resp.status, json_payload)
                        yield response