utils.py 4.2 KB
Newer Older
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
1
2
3
import os
import torch
import torch.distributed
Olivier Dehaene's avatar
Olivier Dehaene committed
4
5

from datetime import timedelta
Nicolas Patry's avatar
Nicolas Patry committed
6
7
8
9
10
11

from functools import partial
from joblib import Parallel, delayed
from huggingface_hub import HfApi, hf_hub_download, try_to_load_from_cache
from huggingface_hub.utils import LocalEntryNotFoundError
from tqdm import tqdm
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from transformers.generation_logits_process import (
    LogitsProcessorList,
    TemperatureLogitsWarper,
    TopPLogitsWarper,
    TopKLogitsWarper,
)


class Sampling:
    def __call__(self, logits):
        probs = torch.nn.functional.softmax(logits, dim=-1)
        next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
        return next_tokens


class Greedy:
    def __call__(self, logits):
        return logits.argmax(dim=-1)


class NextTokenChooser:
    def __init__(self, temperature=1.0, top_k=None, top_p=None, do_sample=False):
        warpers = LogitsProcessorList()
        # the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
        # all samplers can be found in `generation_utils_samplers.py`
        sampling = do_sample
        if temperature is not None and temperature != 1.0:
            temperature = float(temperature)
            warpers.append(TemperatureLogitsWarper(temperature))
            sampling = True
        if top_k is not None and top_k != 0:
            warpers.append(TopKLogitsWarper(top_k=top_k))
            sampling = True
        if top_p is not None and top_p < 1.0:
            warpers.append(TopPLogitsWarper(top_p=top_p))
            sampling = True

        self.warpers = warpers
        self.choice = Sampling() if sampling else Greedy()

    def __call__(self, input_ids, scores):
        scores = self.warpers(input_ids, scores)
        next_ids = self.choice(scores)
        return next_ids.unsqueeze(-1)


class StoppingCriteria:
    def __init__(self, max_new_tokens=20):
        self.max_new_tokens = max_new_tokens
        self.current_tokens = 0

    def __call__(self, all_ids):
        self.current_tokens += 1
        if self.current_tokens >= self.max_new_tokens:
            return True
        return False


def initialize_torch_distributed():
    rank = int(os.getenv("RANK", "0"))
    world_size = int(os.getenv("WORLD_SIZE", "1"))

    if torch.cuda.is_available():
        # initialized `torch.distributed`
        # Set the device id.
        assert world_size <= torch.cuda.device_count(), "Each process is one gpu"
        device = rank % torch.cuda.device_count()
        torch.cuda.set_device(device)
        backend = "nccl"
    else:
        backend = "gloo"

    # Call the init process.
    torch.distributed.init_process_group(
        backend=backend,
        world_size=world_size,
        rank=rank,
Olivier Dehaene's avatar
Olivier Dehaene committed
89
        timeout=timedelta(seconds=60),
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
90
91
92
93
94
    )

    return torch.distributed.distributed_c10d._get_default_group(), rank, world_size


95
def weight_hub_files(model_name, extension=".safetensors"):
Nicolas Patry's avatar
Nicolas Patry committed
96
97
98
    """Get the safetensors filenames on the hub"""
    api = HfApi()
    info = api.model_info(model_name)
99
    filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]
Nicolas Patry's avatar
Nicolas Patry committed
100
101
102
    return filenames


103
def weight_files(model_name, extension=".safetensors"):
Nicolas Patry's avatar
Nicolas Patry committed
104
    """Get the local safetensors filenames"""
105
    filenames = weight_hub_files(model_name, extension)
Nicolas Patry's avatar
Nicolas Patry committed
106
107
108
109
110
111
112
    files = []
    for filename in filenames:
        cache_file = try_to_load_from_cache(model_name, filename=filename)
        if cache_file is None:
            raise LocalEntryNotFoundError(
                f"File {filename} of model {model_name} not found in "
                f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
113
                f"Please run `text-generation-server download-weights {model_name}` first."
Nicolas Patry's avatar
Nicolas Patry committed
114
115
116
117
118
119
            )
        files.append(cache_file)

    return files


120
def download_weights(model_name, extension=".safetensors"):
Nicolas Patry's avatar
Nicolas Patry committed
121
    """Download the safetensors files from the hub"""
122
    filenames = weight_hub_files(model_name, extension)
Nicolas Patry's avatar
Nicolas Patry committed
123
124
125
126
127
128
129
130
131

    download_function = partial(
        hf_hub_download, repo_id=model_name, local_files_only=False
    )
    # FIXME: fix the overlapping progress bars
    files = Parallel(n_jobs=5)(
        delayed(download_function)(filename=filename) for filename in tqdm(filenames)
    )
    return files