bloom.py 8.89 KB
Newer Older
1
2
3
import torch
import torch.distributed

4
from typing import List, Optional, Type
5
6
7

from accelerate import init_empty_weights
from safetensors import safe_open
8
9
10
11
12
13
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoConfig,
    PreTrainedTokenizerBase,
)
14
15
16
17
18
19
from transformers.models.bloom.parallel_layers import (
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
    TensorParallelRowLinear,
)

20
21
22
23
from text_generation_server.models import CausalLM
from text_generation_server.models.causal_lm import CausalLMBatch
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
24
25
26
27
28
29
30
31
32
33
34
35
    initialize_torch_distributed,
    weight_files,
)

HAS_BITS_AND_BYTES = True
try:
    import bitsandbytes as bnb
    from bitsandbytes.nn import Int8Params
except Exception as e:
    HAS_BITS_AND_BYTES = False


36
37
38
class BloomCausalLMBatch(CausalLMBatch):
    @classmethod
    def from_pb(
39
40
41
42
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    ) -> "CausalLMBatch":
        batch = super(BloomCausalLMBatch, cls).from_pb(
            pb=pb, tokenizer=tokenizer, device=device
        )
        batch.keys_head_dim_last = False
        return batch


class BLOOM(CausalLM):
    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return BloomCausalLMBatch


class BLOOMSharded(BLOOM):
58
    def __init__(
59
        self, model_id: str, revision: Optional[str] = None, quantize: bool = False
60
    ):
61
62
63
        self.process_group, self.rank, self.world_size = initialize_torch_distributed()
        self.master = self.rank == 0
        if torch.cuda.is_available():
64
            device = torch.device(f"cuda:{self.rank}")
65
            dtype = torch.bfloat16
66
        else:
67
            device = torch.device("cpu")
68
69
            dtype = torch.float32

70
        tokenizer = AutoTokenizer.from_pretrained(
71
            model_id, revision=revision, padding_side="left", truncation_side="left"
72
        )
73
74

        config = AutoConfig.from_pretrained(
75
            model_id, revision=revision, slow_but_exact=False, tp_parallel=True
76
77
78
79
        )
        config.pad_token_id = 3

        torch.distributed.barrier(group=self.process_group)
80
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
81
82
83
84
85
86
87
88
89

        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
            quantize=quantize,
90
            device=device,
91
92
93
94
95
            rank=self.rank,
            world_size=self.world_size,
        )
        self.model = model.eval().to(dtype)
        torch.distributed.barrier(group=self.process_group)
96
97
98
99
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )
100
101
102

    @staticmethod
    def load_weights(
103
104
105
106
107
108
        model,
        filenames: List[str],
        quantize: bool,
        device: torch.device,
        rank: int,
        world_size: int,
109
110
111
112
    ):
        parameters = dict(model.named_parameters())
        for file in filenames:
            with safe_open(
113
                file, framework="pt", device=str(device) if not quantize else "cpu"
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
            ) as f:
                for name in f.keys():
                    full_name = f"transformer.{name}"

                    module_name, param_name = full_name.rsplit(".", 1)
                    module = model.get_submodule(module_name)
                    current_tensor = parameters[full_name]

                    slice_ = f.get_slice(name)

                    if isinstance(module, TensorParallelColumnLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                        else:
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[1]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[:, start:stop]
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        tensor = slice_[:]

                    if current_tensor.shape != tensor.shape:
                        raise ValueError(
                            f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
                        )

                    tensor = tensor.contiguous()

                    if quantize:
                        if not HAS_BITS_AND_BYTES:
                            raise ImportError(
                                "bitsandbytes is not available on your machine either because it is not installed "
                                "or you don't have a GPU.\n"
                                "You can install it with `pip install bitsandbytes`."
                            )

                        if (
174
175
176
                            type(module)
                            in [TensorParallelRowLinear, TensorParallelColumnLinear]
                            and param_name == "weight"
177
178
                        ):
                            tensor = Int8Params(
179
                                tensor,
180
181
182
183
184
185
186
187
188
189
190
191
192
                                has_fp16_weights=False,
                                requires_grad=False,
                            ).to(device)
                            state = bnb.MatmulLtState()
                            state.threshold = 6.0
                            state.has_fp16_weights = False
                            state.memory_efficient_backward = False
                            state.use_pool = True
                            state.CB = tensor.CB
                            state.SCB = tensor.SCB
                            tensor.CB = None
                            tensor.SCB = None

193
                            def replace_linear(state):
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
                                def linear(input, weight, bias):
                                    out = bnb.matmul(
                                        input,
                                        weight,
                                        state=state,
                                        threshold=state.threshold,
                                        bias=bias,
                                    )

                                    if state.CB is not None:
                                        # we converted 8-bit row major to turing/ampere format
                                        # in the first inference pass
                                        # we no longer need the row-major weight
                                        del state.CB
                                        weight.data = state.CxB

210
                                    return out
211
212
213

                                return linear

214
                            module.linear = replace_linear(state)
215
216
217
218
219
220
221
222

                        else:
                            tensor = tensor.to(device)

                    module._parameters[param_name] = tensor
                    if name == "word_embeddings.weight":
                        model.lm_head._parameters["weight"] = tensor

223
224
225
    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ):
226
227
228
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
229
            position_ids=position_ids,
230
231
232
233
234
            past_key_values=past_key_values,
            use_cache=True,
        )

        # Logits are sharded, so we need to gather them
OlivierDehaene's avatar
OlivierDehaene committed
235
236
237
        logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
        torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
        logits = torch.cat(logits, dim=2)
238

239
        return logits, outputs.past_key_values