gpt_neox.py 2.69 KB
Newer Older
1
2
3
import torch
import torch.distributed

4
from typing import Optional
5
6
7
8
9

from transformers import (
    AutoTokenizer,
    AutoConfig,
)
10
from text_generation_server.models import CausalLM
11
12
13
from text_generation_server.models.custom_modeling.neox_modeling import (
    GPTNeoxForCausalLM,
)
14
from text_generation_server.utils import (
15
16
    initialize_torch_distributed,
    weight_files,
17
    Weights,
18
19
20
)


21
class GPTNeoxSharded(CausalLM):
22
    def __init__(
23
24
25
26
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
OlivierDehaene's avatar
OlivierDehaene committed
27
        use_medusa: Optional[str] = None,
28
        dtype: Optional[torch.dtype] = None,
29
        trust_remote_code: bool = False,
30
    ):
31
        self.process_group, rank, world_size = initialize_torch_distributed()
32
        if torch.cuda.is_available():
33
            device = torch.device(f"cuda:{rank}")
34
            dtype = torch.float16 if dtype is None else dtype
35
36
        else:
            device = torch.device("cpu")
Wang, Yi's avatar
Wang, Yi committed
37
            dtype = torch.float32 if dtype is None else dtype
38
39

        tokenizer = AutoTokenizer.from_pretrained(
40
41
42
43
44
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
45
46
47
48
        )
        tokenizer.pad_token = tokenizer.eos_token

        config = AutoConfig.from_pretrained(
49
50
51
            model_id,
            revision=revision,
            trust_remote_code=trust_remote_code,
52
        )
53
        config.quantize = quantize
OlivierDehaene's avatar
OlivierDehaene committed
54
        config.use_medusa = use_medusa
55
56

        torch.distributed.barrier(group=self.process_group)
57
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
58
59
60
        weights = Weights(
            filenames, device=device, dtype=dtype, process_group=self.process_group
        )
61
        if config.quantize == "gptq":
OlivierDehaene's avatar
OlivierDehaene committed
62
            weights._set_gptq_params(model_id, revision)
63

64
        model = GPTNeoxForCausalLM(config, weights)
65
66
67

        torch.distributed.barrier(group=self.process_group)
        super(CausalLM, self).__init__(
68
            model=model,
69
            tokenizer=tokenizer,
70
71
            requires_padding=True,
            dtype=dtype,
72
            device=device,
73
74
            rank=rank,
            world_size=world_size,
75
76
77
78
79
        )

    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ):
OlivierDehaene's avatar
OlivierDehaene committed
80
        outputs, speculative_logits = self.model.forward(
81
82
83
84
85
86
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=True,
        )
87

88
        logits = outputs.logits
OlivierDehaene's avatar
OlivierDehaene committed
89
        return logits, speculative_logits, outputs.past_key_values