flash_starcoder2.py 2.73 KB
Newer Older
OlivierDehaene's avatar
OlivierDehaene committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import math

import torch

from typing import Optional

from transformers.models.gpt2 import GPT2TokenizerFast

from text_generation_server.models.cache_manager import BLOCK_SIZE
from text_generation_server.models.flash_mistral import (
    BaseFlashMistral,
    set_sliding_window,
)
from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import (
    Starcoder2Config,
    FlashStarcoder2ForCausalLM,
)
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)


# Starcoder2 has the same base as Mistral
class FlashStarcoder2(BaseFlashMistral):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        use_medusa: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.float16 if dtype is None else dtype
        else:
OlivierDehaene's avatar
OlivierDehaene committed
41
            raise NotImplementedError("FlashStarcoder2 is only available on GPU")
OlivierDehaene's avatar
OlivierDehaene committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

        tokenizer = GPT2TokenizerFast.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )

        config = Starcoder2Config.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
        config.use_medusa = use_medusa

        # Set context windows
        if config.sliding_window is not None:
            set_sliding_window(
                config.sliding_window, math.ceil(config.sliding_window / BLOCK_SIZE)
            )

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        if config.quantize in ["gptq", "awq"]:
            weights._set_gptq_params(model_id, revision)

        model = FlashStarcoder2ForCausalLM(config, weights)

        self.cuda_graphs = {}

        torch.distributed.barrier(group=self.process_group)
        super(BaseFlashMistral, self).__init__(
            model=model,
            tokenizer=tokenizer,
            num_layers=len(model.model.layers),
            num_kv_heads=model.model.num_key_value_heads,
            head_size=model.model.head_size,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
            sliding_window=config.sliding_window,
        )