model.py 3.28 KB
Newer Older
1
import inspect
2
3
import torch

4
from abc import ABC, abstractmethod
5
from typing import List, Tuple, Optional, TypeVar, Type
6
from transformers import PreTrainedTokenizerBase, PretrainedConfig
7

8
from text_generation_server.models.types import Batch, Generation
9
from text_generation_server.pb.generate_pb2 import InfoResponse
10

11
12
B = TypeVar("B", bound=Batch)

13

14
class Model(ABC):
15
16
    def __init__(
        self,
17
        model: torch.nn.Module,
18
        tokenizer: PreTrainedTokenizerBase,
19
20
        requires_padding: bool,
        dtype: torch.dtype,
21
        device: torch.device,
22
23
        rank: int = 0,
        world_size: int = 1,
24
    ):
25
        self.model = model.eval()
26
        self.tokenizer = tokenizer
27
        self.all_special_ids = set(tokenizer.all_special_ids)
28
29
        self.requires_padding = requires_padding
        self.dtype = dtype
30
        self.device = device
31
32
        self.rank = rank
        self.world_size = world_size
33
34
35
36
37
38

        self.has_position_ids = (
            inspect.signature(model.forward).parameters.get("position_ids", None)
            is not None
        )

39
        self.check_initialized()
40

41
42
43
44
45
46
47
48
    @property
    def info(self) -> InfoResponse:
        return InfoResponse(
            requires_padding=self.requires_padding,
            dtype=str(self.dtype),
            device_type=self.device.type,
        )

49
    @property
50
    @abstractmethod
51
    def batch_type(self) -> Type[B]:
52
        raise NotImplementedError
53

54
    @abstractmethod
55
    def generate_token(self, batch: B) -> Tuple[List[Generation], Optional[B]]:
56
        raise NotImplementedError
57

58
    def warmup(self, batch: B) -> Optional[int]:
59
        self.generate_token(batch)
60
        return None
61

62
63
64
    def decode_token(
        self,
        all_input_ids: List[int],
65
66
        prefix_offset: int = 0,
        read_offset: int = 0,
67
        skip_special_tokens: bool = False,
68
    ) -> Tuple[str, int, int]:
69
        """Hack to hopefully support generate_stream for the maximum number of tokenizers"""
70

71
72
73
        # The prefix text is necessary only to defeat cleanup algorithms in the decode
        # which decide to add a space or not depending on the surrounding ids.
        prefix_text = self.tokenizer.decode(
OlivierDehaene's avatar
OlivierDehaene committed
74
75
            all_input_ids[prefix_offset:read_offset],
            skip_special_tokens=skip_special_tokens,
76
77
        )
        new_text = self.tokenizer.decode(
78
            all_input_ids[prefix_offset:], skip_special_tokens=skip_special_tokens
79
        )
80

81
82
83
84
85
86
87
        if len(new_text) > len(prefix_text) and not new_text.endswith("�"):
            # utf-8 char at the end means it's a potential unfinished byte sequence
            # from byte fallback tokenization.
            # If it's in the middle, it's probably a real invalid id generated
            # by the model
            new_text = new_text[len(prefix_text) :]
            return new_text, read_offset, len(all_input_ids)
88
        else:
89
            return "", prefix_offset, read_offset
90
91
92
93
94
95
96
97
98
99

    def check_initialized(self):
        uninitialized_parameters = []
        for n, p in self.model.named_parameters():
            if p.data.device == torch.device("meta"):
                uninitialized_parameters.append(n)
        if uninitialized_parameters:
            raise RuntimeError(
                f"found uninitialized parameters in model {self.__class__.__name__}: {uninitialized_parameters}"
            )