flash_gpt2.py 2.58 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import torch
import torch.distributed

from opentelemetry import trace
from transformers import AutoConfig, AutoTokenizer, GenerationConfig
from transformers.models.gpt2 import GPT2Tokenizer
from typing import Optional

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
    FlashGPT2ForCausalLM,
)
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)
fxmarty's avatar
fxmarty committed
18
from text_generation_server.utils.import_utils import SYSTEM
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

tracer = trace.get_tracer(__name__)


class FlashGPT2(FlashCausalLM):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        speculator: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.float16 if dtype is None else dtype
        elif SYSTEM == "xpu":
            device = torch.device(f"xpu:{rank}")
            dtype = torch.float16 if dtype is None else dtype
        else:
            raise NotImplementedError("FlashGPT2 is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )

        config = AutoConfig.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
        config.speculator = speculator

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        if config.quantize in ["gptq", "awq"]:
            weights._set_gptq_params(model_id, revision)

        prefix = ""
        model = FlashGPT2ForCausalLM(prefix, config, weights)
        torch.distributed.barrier(group=self.process_group)
        super(FlashGPT2, self).__init__(
            model=model,
            tokenizer=tokenizer,
            num_layers=len(model.model.layers),
            num_kv_heads=model.model.num_heads,
            head_size=model.model.head_size,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
        )