backend.rs 19.3 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
use crate::client::{Batch, CachedBatch, ClientError, Generation, Health, ShardedClient};
/// Batching and inference logic
use crate::queue::{Entry, Queue};
use async_trait::async_trait;
use nohash_hasher::IntMap;
use std::sync::Arc;
use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse};
use text_generation_router::validation::ValidGenerateRequest;
use text_generation_router::{FinishReason, PrefillToken, Token};
use tokio::sync::mpsc::error::SendError;
use tokio::sync::{mpsc, Notify};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tracing::{info_span, instrument, Instrument, Span};

pub struct BackendV3 {
    /// Request queue
    queue: Queue,
    /// Notify batcher on queue appends
    batching_task_notifier: Arc<Notify>,
    /// Client clone, used for health checks to skip the queue
    client: ShardedClient,
}

impl BackendV3 {
    #[allow(clippy::too_many_arguments)]
    pub(crate) fn new(
        client: ShardedClient,
        waiting_served_ratio: f32,
        max_batch_prefill_tokens: u32,
        max_batch_total_tokens: u32,
        max_waiting_tokens: usize,
        max_batch_size: Option<usize>,
        requires_padding: bool,
        window_size: Option<u32>,
        speculate: u32,
    ) -> Self {
38
39
40
41
42
43
44
        let flashdecoding = if let Ok(flashdecoding) = std::env::var("FLASH_DECODING") {
            matches!(flashdecoding.to_lowercase().as_str(), "1" | "true")
        } else {
            false
        };
        let block_size = if flashdecoding { 256 } else { 16 };

Nicolas Patry's avatar
Nicolas Patry committed
45
46
        let queue = Queue::new(
            requires_padding,
47
            block_size,
Nicolas Patry's avatar
Nicolas Patry committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
            window_size,
            speculate,
            max_batch_total_tokens,
        );
        let batching_task_notifier = Arc::new(Notify::new());

        // Spawn batching background task that contains all the inference logic
        tokio::spawn(batching_task(
            client.clone(),
            waiting_served_ratio,
            max_batch_prefill_tokens,
            max_batch_total_tokens,
            max_waiting_tokens,
            max_batch_size,
            queue.clone(),
            batching_task_notifier.clone(),
        ));

        Self {
            queue,
            batching_task_notifier,
            client,
        }
    }
}

#[async_trait]
impl Backend for BackendV3 {
    #[instrument(skip_all)]
    fn schedule(
        &self,
        request: ValidGenerateRequest,
    ) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
        // MPSC channel to communicate with the background batching task
        let (response_tx, response_rx) = mpsc::unbounded_channel();

        // Append the request to the queue
        self.queue.append(Entry {
            request,
            response_tx,
            span: Span::current(),
            temp_span: None,
            queue_time: Instant::now(),
            batch_time: None,
            block_allocation: None,
        });

        // Notify the background task that we have a new entry in the queue that needs
        // to be batched
        self.batching_task_notifier.notify_one();

        // Return stream
        Ok(UnboundedReceiverStream::new(response_rx))
    }

    async fn health(&self, current_health: bool) -> bool {
        if current_health {
            // Generation is healthy, we only check that the shards can allocate on device
            self.client.device_health().await
        } else {
            self.client.model_health().await
        }
        .is_ok()
    }
}

/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
#[allow(clippy::too_many_arguments)]
pub(crate) async fn batching_task(
    mut client: ShardedClient,
    waiting_served_ratio: f32,
    max_batch_prefill_tokens: u32,
    max_batch_total_tokens: u32,
    max_waiting_tokens: usize,
    max_batch_size: Option<usize>,
    queue: Queue,
    notifier: Arc<Notify>,
) {
    // Infinite loop
    loop {
        // Wait for a notification from the Infer struct
        notifier.notified().await;

        // Get the next batch from the queue
        // This batch might be smaller than the maximum batch size if there are not enough requests
        // waiting in the queue
        while let Some((mut entries, batch, span)) = queue
            .next_batch(
                None,
                max_batch_size,
                max_batch_prefill_tokens,
                max_batch_total_tokens,
            )
            .await
        {
            let mut cached_batch = prefill(&mut client, batch, &mut entries)
                .instrument(span)
                .await;
            let mut waiting_tokens = 1;

            // We loop until we do not receive any cached batch from the inference server (== until
            // all requests have met their stopping criteria)
            while let Some(batch) = cached_batch {
                // Get current batch info
                let batch_size = batch.size;
                let batch_max_tokens = batch.max_tokens;
                let mut batches = vec![batch];
                metrics::gauge!("tgi_batch_current_size").set(batch_size as f64);
                metrics::gauge!("tgi_batch_current_max_tokens").set(batch_max_tokens as f64);

                let min_size = if waiting_tokens >= max_waiting_tokens {
                    // If we didn't onboard any new requests since >= max_waiting_tokens, we try
                    // to add a new batch even though its size might be small
                    None
                } else {
                    // Minimum batch size
                    Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
                };

                let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens);
                let max_size = max_batch_size.map(|max_size| max_size - batch_size as usize);

                // Try to get a new batch
                if let Some((mut new_entries, new_batch, span)) = queue
                    .next_batch(min_size, max_size, max_batch_prefill_tokens, token_budget)
                    .await
                {
                    // Tracking metrics
                    if min_size.is_some() {
                        metrics::counter!("tgi_batch_concat", "reason" => "backpressure")
                            .increment(1);
                    } else {
                        metrics::counter!("tgi_batch_concat", "reason" => "wait_exceeded")
                            .increment(1);
                    }

                    entries.iter_mut().for_each(|(_, entry)| {
                        // Create a new span to add the info that this entry is waiting
                        // because a new batch is being computed
                        let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
                        // Add relationships
                        span.follows_from(&entry_waiting_span);
                        entry_waiting_span.follows_from(&span);
                        // Update entry
                        entry.temp_span = Some(entry_waiting_span);
                    });

                    // Generate one token for this new batch to have the attention past in cache
                    let new_cached_batch = prefill(&mut client, new_batch, &mut new_entries)
                        .instrument(span)
                        .await;
                    // Reset waiting counter
                    waiting_tokens = 1;
                    // Extend current batch with the new batch
                    if let Some(new_cached_batch) = new_cached_batch {
                        entries.extend(new_entries);
                        batches.push(new_cached_batch);
                    }
                }

                // Create span for this batch to add context to inference calls
                let next_batch_size = entries.len();
                let next_batch_span =
                    info_span!(parent: None, "batch", batch_size = next_batch_size);
                entries.iter_mut().for_each(|(_, entry)| {
                    // Create a new span to link the batch back to this entry
                    let entry_batch_span = info_span!(parent: &entry.span, "infer");
                    // Add relationships
                    next_batch_span.follows_from(&entry_batch_span);
                    entry_batch_span.follows_from(&next_batch_span);
                    // Update entry
                    entry.temp_span = Some(entry_batch_span);
                });

                cached_batch = decode(&mut client, batches, &mut entries)
                    .instrument(next_batch_span)
                    .await;
                waiting_tokens += 1;
            }
            metrics::gauge!("tgi_batch_current_size").set(0.0);
            metrics::gauge!("tgi_batch_current_max_tokens").set(0.0);
        }
    }
}

#[instrument(skip_all)]
async fn prefill(
    client: &mut ShardedClient,
    batch: Batch,
    entries: &mut IntMap<u64, Entry>,
) -> Option<CachedBatch> {
    let start_time = Instant::now();
    let batch_id = batch.id;
    metrics::counter!("tgi_batch_inference_count", "method" => "prefill").increment(1);

    match client.prefill(batch).await {
        Ok((generations, next_batch, timings)) => {
            let start_filtering_time = Instant::now();
            // Send generated tokens and filter stopped entries
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
            let next_batch = filter_batch(client, next_batch, entries).await;

            metrics::histogram!("tgi_batch_forward_duration", "method" => "prefill")
                .record(timings.forward.as_secs_f64());
            metrics::histogram!("tgi_batch_decode_duration", "method" => "prefill")
                .record(timings.decode.as_secs_f64());
            metrics::histogram!("tgi_batch_filter_duration", "method" => "prefill")
                .record(start_filtering_time.elapsed().as_secs_f64());
            metrics::histogram!("tgi_batch_inference_duration", "method" => "prefill")
                .record(start_time.elapsed().as_secs_f64());
            metrics::counter!("tgi_batch_inference_success", "method" => "prefill").increment(1);
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
            let _ = client.clear_cache(Some(batch_id)).await;
            send_errors(err, entries);
            metrics::counter!("tgi_batch_inference_failure", "method" => "prefill").increment(1);
            None
        }
    }
}

#[instrument(skip_all)]
async fn decode(
    client: &mut ShardedClient,
    batches: Vec<CachedBatch>,
    entries: &mut IntMap<u64, Entry>,
) -> Option<CachedBatch> {
    let start_time = Instant::now();
    let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
    metrics::counter!("tgi_batch_inference_count", "method" => "decode").increment(1);

    match client.decode(batches).await {
        Ok((generations, next_batch, timings)) => {
            let start_filtering_time = Instant::now();
            // Send generated tokens and filter stopped entries
            filter_send_generations(generations, entries);

            // Filter next batch and remove requests that were stopped
            let next_batch = filter_batch(client, next_batch, entries).await;

            if let Some(concat_duration) = timings.concat {
                metrics::histogram!("tgi_batch_concat_duration", "method" => "decode")
                    .record(concat_duration.as_secs_f64());
            }
            metrics::histogram!("tgi_batch_forward_duration", "method" => "decode")
                .record(timings.forward.as_secs_f64());
            metrics::histogram!("tgi_batch_decode_duration", "method" => "decode")
                .record(timings.decode.as_secs_f64());
            metrics::histogram!("tgi_batch_filter_duration", "method" => "decode")
                .record(start_filtering_time.elapsed().as_secs_f64());
            metrics::histogram!("tgi_batch_inference_duration", "method" => "decode")
                .record(start_time.elapsed().as_secs_f64());
            metrics::counter!("tgi_batch_inference_success", "method" => "decode").increment(1);
            next_batch
        }
        // If we have an error, we discard the whole batch
        Err(err) => {
            for id in batch_ids {
                let _ = client.clear_cache(Some(id)).await;
            }
            send_errors(err, entries);
            metrics::counter!("tgi_batch_inference_failure", "method" => "decode").increment(1);
            None
        }
    }
}

/// Filter a `batch` and remove all requests not present in `entries`
#[instrument(skip_all)]
async fn filter_batch(
    client: &mut ShardedClient,
    next_batch: Option<CachedBatch>,
    entries: &IntMap<u64, Entry>,
) -> Option<CachedBatch> {
    let mut batch = next_batch?;

    // No need to filter
    if batch.size as usize == entries.len() {
        return Some(batch);
    }

    let id = batch.id;

    // Retain only requests that are still in entries
    batch.request_ids.retain(|id| entries.contains_key(id));

    if batch.request_ids.is_empty() {
        // All requests have been filtered out
        // Next batch is now empty
        // Clear it from the Python shards cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
        client.clear_cache(Some(id)).await.unwrap();
        None
    } else {
        // Filter Python shard cache
        // We unwrap here as we need to panic since we cannot recover if this method fails
        client.filter_batch(id, batch.request_ids).await.unwrap()
    }
}

/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
/// and filter entries
#[instrument(skip_all)]
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
    generations.into_iter().for_each(|generation| {
        let id = generation.request_id;
        // Get entry
        // We can `expect` here as the request id should always be in the entries
        let entry = entries
            .get(&id)
            .expect("ID not found in entries. This is a bug.");

        // Create and enter a span to link this function back to the entry
        let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
        // Send generation responses back to the infer task
        // If the receive an error from the Flume channel, it means that the client dropped the
        // request and we need to stop generating hence why we unwrap_or(true)
        let stopped = send_responses(generation, entry).map_err(|err| {
            tracing::error!("Entry response channel error.");
            metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
            err
        }).unwrap_or(true);
        if stopped {
            entries.remove(&id).expect("ID not found in entries. This is a bug.");
        }
    });
}

/// Send responses through the `entry` response channel
fn send_responses(
    generation: Generation,
    entry: &Entry,
) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> {
    // Return directly if the channel is disconnected
    if entry.response_tx.is_closed() {
        metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
        return Ok(true);
    }

    let mut stopped = false;

    if let Some(prefill_tokens) = generation.prefill_tokens {
        // Create Token objects
        // We do that here instead of in the Python code as Rust for loops are faster
        let prefill_tokens = prefill_tokens
            .ids
            .into_iter()
            .zip(prefill_tokens.logprobs)
            .zip(prefill_tokens.texts)
            .map(|((id, logprob), text)| PrefillToken { id, text, logprob })
            .collect();

        // Send message
        entry
            .response_tx
            .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
    }

    // Create last Token
    let tokens_ = generation.tokens.expect("Non empty tokens in generation");
    let n = tokens_.ids.len();
    metrics::histogram!("tgi_request_skipped_tokens").record((n - 1) as f64);
    let mut iterator = tokens_
        .ids
        .into_iter()
        .zip(tokens_.logprobs)
        .zip(tokens_.texts)
        .zip(tokens_.is_special)
        .enumerate()
        .peekable();
    while let Some((i, (((id, logprob), text), special))) = iterator.next() {
        let token = Token {
            id,
            text,
            logprob,
            special,
        };
        let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) {
            top_tokens_
                .ids
                .iter()
                .zip(top_tokens_.logprobs.iter())
                .zip(top_tokens_.texts.iter())
                .zip(top_tokens_.is_special.iter())
                .map(|(((&id, &logprob), text), &special)| Token {
                    id,
                    text: text.to_string(),
                    logprob,
                    special,
                })
                .collect()
        } else {
            vec![]
        };
        match (&generation.generated_text, iterator.peek()) {
            (Some(generated_text), None) => {
                // Generation has ended
                stopped = true;
                // Send message
                entry.response_tx.send(Ok(InferStreamResponse::End {
                    token,
                    top_tokens,
                    generated_text: GeneratedText::from(generated_text.clone()),
                    queued: entry.queue_time,
                    start: entry.batch_time.unwrap(),
                }))?;
            }
            _ => {
                // Send message
                entry
                    .response_tx
                    .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?;
            }
        }
    }

    Ok(stopped)
}

/// Send errors to Infer for all `entries`
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
    entries.drain().for_each(|(_, entry)| {
        // Create and enter a span to link this function back to the entry
        let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
        let err = InferError::GenerationError(error.to_string());
        metrics::counter!("tgi_request_failure", "err" => "generation").increment(1);
        tracing::error!("{err}");

        // unwrap_or is valid here as we don't care if the receiver is gone.
        entry
            .response_tx
            .send(Err(err))
            .unwrap_or(());
    });
}

impl From<crate::client::GeneratedText> for GeneratedText {
    fn from(value: crate::client::GeneratedText) -> Self {
        let v3_finish_reason = crate::client::FinishReason::try_from(value.finish_reason).unwrap();
        let finish_reason = match v3_finish_reason {
            crate::client::FinishReason::Length => FinishReason::Length,
            crate::client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            crate::client::FinishReason::StopSequence => FinishReason::StopSequence,
        };

        Self {
            text: value.text,
            generated_tokens: value.generated_tokens,
            finish_reason,
            seed: value.seed,
        }
    }
}