hub.py 5.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import time
import os

from datetime import timedelta
from loguru import logger
from pathlib import Path
from typing import Optional, List

from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from huggingface_hub.utils import (
    LocalEntryNotFoundError,
    EntryNotFoundError,
    RevisionNotFoundError,  # Import here to ease try/except in other part of the lib
)

WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None)


def weight_hub_files(
    model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[str]:
    """Get the weights filenames on the hub"""
    api = HfApi()
    info = api.model_info(model_id, revision=revision)
    filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]

    if not filenames:
        raise EntryNotFoundError(
            f"No {extension} weights found for model {model_id} and revision {revision}.",
            None,
        )

    return filenames


def try_to_load_from_cache(
    model_id: str, revision: Optional[str], filename: str
) -> Optional[Path]:
    """Try to load a file from the Hugging Face cache"""
    if revision is None:
        revision = "main"

    object_id = model_id.replace("/", "--")
    repo_cache = Path(HUGGINGFACE_HUB_CACHE) / f"models--{object_id}"

    if not repo_cache.is_dir():
        # No cache for this model
        return None

    refs_dir = repo_cache / "refs"
    snapshots_dir = repo_cache / "snapshots"
    no_exist_dir = repo_cache / ".no_exist"

    # Resolve refs (for instance to convert main to the associated commit sha)
    if refs_dir.is_dir():
        revision_file = refs_dir / revision
        if revision_file.exists():
            with revision_file.open() as f:
                revision = f.read()

    # Check if file is cached as "no_exist"
    if (no_exist_dir / revision / filename).is_file():
        return None

    # Check if revision folder exists
    if not snapshots_dir.exists():
        return None
    cached_shas = os.listdir(snapshots_dir)
    if revision not in cached_shas:
        # No cache for this revision and we won't try to return a random revision
        return None

    # Check if file exists in cache
    cached_file = snapshots_dir / revision / filename
    return cached_file if cached_file.is_file() else None


def weight_files(
    model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[Path]:
    """Get the local files"""
    try:
        filenames = weight_hub_files(model_id, revision, extension)
    except EntryNotFoundError as e:
        if extension != ".safetensors":
            raise e
        # Try to see if there are pytorch weights
        pt_filenames = weight_hub_files(model_id, revision, extension=".bin")
        # Change pytorch extension to safetensors extension
        # It is possible that we have safetensors weights locally even though they are not on the
        # hub if we converted weights locally without pushing them
        filenames = [
            f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames
        ]

    if WEIGHTS_CACHE_OVERRIDE is not None:
        files = []
        for filename in filenames:
            p = Path(WEIGHTS_CACHE_OVERRIDE) / filename
            if not p.exists():
                raise LocalEntryNotFoundError(
                    f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}."
                )
            files.append(p)
        return files

    files = []
    for filename in filenames:
        cache_file = try_to_load_from_cache(
            model_id, revision=revision, filename=filename
        )
        if cache_file is None:
            raise LocalEntryNotFoundError(
                f"File {filename} of model {model_id} not found in "
                f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
                f"Please run `text-generation-server download-weights {model_id}` first."
            )
        files.append(cache_file)

    return files


def download_weights(
    filenames: List[str], model_id: str, revision: Optional[str] = None
) -> List[Path]:
    """Download the safetensors files from the hub"""

    def download_file(filename):
        local_file = try_to_load_from_cache(model_id, revision, filename)
        if local_file is not None:
            logger.info(f"File {filename} already present in cache.")
133
            return Path(local_file)
134

135
        logger.info(f"Download file: {filename}")
136
137
138
139
140
141
142
143
        start_time = time.time()
        local_file = hf_hub_download(
            filename=filename,
            repo_id=model_id,
            revision=revision,
            local_files_only=False,
        )
        logger.info(
144
            f"Downloaded {local_file} in {timedelta(seconds=int(time.time() - start_time))}."
145
        )
146
        return Path(local_file)
147
148
149
150

    # We do this instead of using tqdm because we want to parse the logs with the launcher
    start_time = time.time()
    files = []
151
152
153
    for i, filename in enumerate(filenames):
        file = download_file(filename)

154
        elapsed = timedelta(seconds=int(time.time() - start_time))
155
        remaining = len(filenames) - (i + 1)
156
        eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0
157

158
159
        logger.info(f"Download: [{i + 1}/{len(filenames)}] -- ETA: {eta}")
        files.append(file)
160

161
    return files