cuda.py 10.5 KB
Newer Older
1
import torch
2
from text_generation_server.layers.attention.kv_cache import KVCache
3
from text_generation_server.utils.import_utils import SYSTEM
4
from text_generation_server.models.globals import (
5
    ATTENTION,
6
7
    BLOCK_SIZE,
)
8
from text_generation_server.layers.attention import Seqlen
9
from typing import Optional
10
11
12
13
14
15
16
17

major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
_PARTITION_SIZE = 512


def paged_attention(
    query: torch.Tensor,
18
    kv_cache: KVCache,
19
20
21
    kv_head_mapping: torch.Tensor,
    softmax_scale: float,
    block_tables: torch.Tensor,
22
    seqlen: Seqlen,
23
    max_s: int,
24
    softcap: Optional[float] = None,
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
):
    # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
    # Copyright 2023 The vLLM team. All rights
    # reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #

    # value_cache => [num_blocks, num_heads, head_size, block_size]
44
45
    # block_size = value_cache.shape[3]
    block_size = BLOCK_SIZE
46
47
48
49
50
51
52
53
    num_seqs, num_heads, head_size = query.shape
    max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE

    # NOTE(woosuk): We use a simple heuristic to decide whether to use
    # PagedAttention V1 or V2. If the number of partitions is 1, we use
    # V1 to avoid the overhead of reduction. Also, if the number of
    # sequences or heads is large, we use V1 since there is enough work
    # to parallelize.
54
    if ATTENTION == "flashinfer":
Nicolas Patry's avatar
Nicolas Patry committed
55
        from text_generation_server.layers.attention.flashinfer import decode_state
56
57

        return decode_state.get().forward(
58
            # TODO: remove `contiguous` call once https://github.com/flashinfer-ai/flashinfer/pull/553 is merged.
59
            query.contiguous(),
60
            paged_kv_cache=(kv_cache.key, kv_cache.value),
61
62
63
            logits_soft_cap=softcap,
            sm_scale=softmax_scale,
        )
64
    elif ATTENTION == "flashdecoding":
65
66
67
        max_q = 1
        max_k = max_s
        import flash_attn_2_cuda
68

69
70
71
72
73
        # TODO fixme when flash contains the fix.
        # Number of splits is not correctly handled
        # by the current path
        # https://github.com/Dao-AILab/flash-attention/blob/320fb59487658f033f56711efd3d61b7c7a6f8f3/csrc/flash_attn/flash_api.cpp#L577
        # This fails becuase we're using causal, therefore window_right is set to 0 and the split logic is never applied.
74
75
        if softcap is None:
            softcap = 0.0
76
        out = flash_attn_2_cuda.varlen_fwd(
77
            query,
78
79
            kv_cache.key,
            kv_cache.value,
80
81
82
            None,
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_k,
83
            None,  # pad_k
84
            None,
85
86
            block_tables,
            None,
87
88
89
90
91
92
93
94
            max_q,
            max_k,
            0.0,  # dropout
            softmax_scale,
            False,  # zero_tensors
            True,  # causal
            -1,  # Window_left
            -1,  # Window right
95
            softcap,
96
97
            False,  # return softmax
            None,  # generator
98
        )
99
        return out[0]
100
    else:
101
102
        if softcap is not None:
            raise RuntimeError("Paged attention doesn't support softcapping")
103
        input_lengths = seqlen.input_lengths + seqlen.cache_lengths
104
        from vllm._C import ops
105

106
107
        out = torch.empty_like(query)

108
109
        use_v1 = max_s <= 8192 and (
            max_num_partitions == 1 or num_seqs * num_heads > 512
110
        )
111
112
113
114
        if use_v1:
            ops.paged_attention_v1(
                out,
                query,
115
116
                kv_cache.key,
                kv_cache.value,
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
                kv_head_mapping,
                softmax_scale,
                block_tables,
                input_lengths,
                block_size,
                max_s,
                None,
                "auto",
                1.0,
            )
        else:
            # Run PagedAttention V2.
            assert _PARTITION_SIZE % block_size == 0
            tmp_output = torch.empty(
                size=(num_seqs, num_heads, max_num_partitions, head_size),
                dtype=out.dtype,
                device=out.device,
            )
            exp_sums = torch.empty(
                size=(num_seqs, num_heads, max_num_partitions),
                dtype=torch.float32,
                device=out.device,
            )
            max_logits = torch.empty_like(exp_sums)

            ops.paged_attention_v2(
                out,
                exp_sums,
                max_logits,
                tmp_output,
                query,
148
149
                kv_cache.key,
                kv_cache.value,
150
151
152
153
154
155
156
157
158
159
160
                kv_head_mapping,
                softmax_scale,
                block_tables,
                input_lengths,
                block_size,
                max_s,
                None,
                "auto",
                1.0,
            )
    return out
161
162
163


try:
164
165
166
167
    is_ampere_or_newer = major >= 8 and minor >= 0
    if not is_ampere_or_newer:
        raise ImportError("FlashAttention only supports Ampere GPUs or newer.")

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    import flash_attn_2_cuda

    V2 = True
except ImportError:
    try:
        import flash_attn_cuda

        V2 = False
    except ImportError as e:
        if major >= 8:
            architecture_suffix = f"-{SYSTEM}"
            raise ImportError(
                "Flash Attention V2 is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
            )
        elif is_sm75:
            raise ImportError(
                "Flash Attention is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                "or install flash attention with `cd server && make install install-flash-attention`"
            ) from e
        else:
            raise ImportError(
                f"GPU with CUDA capability {major} {minor} is not supported"
            ) from e


196
197
198
if ATTENTION == "flashdecoding" and not V2:
    raise ValueError("Flash decoding requires Flash Attention V2")

199
SUPPORTS_WINDOWING = V2
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

def attention(
    *,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: KVCache,
    seqlen: Seqlen,
    block_tables: torch.Tensor,
    softmax_scale: float,
    window_size_left: int = -1,
    causal: bool = True,
    softcap: Optional[float] = None,
):
    if ATTENTION == "flashinfer":
Nicolas Patry's avatar
Nicolas Patry committed
216
217
218
        from text_generation_server.layers.attention.flashinfer import (
            prefill_with_paged_kv_state,
        )
219

220
221
222
        if softcap is None:
            softcap = 0.0

Nicolas Patry's avatar
Nicolas Patry committed
223
        return prefill_with_paged_kv_state.get().forward(
224
            # TODO: remove `contiguous` call once https://github.com/flashinfer-ai/flashinfer/pull/553 is merged.
225
            query.contiguous(),
226
            causal=causal,
227
            paged_kv_cache=(kv_cache.key, kv_cache.value),
228
229
            logits_soft_cap=softcap,
            sm_scale=softmax_scale,
230
            window_left=window_size_left,
231
232
        )

233
234
235
236
237
238
    # If we are using flashdecoding or paged, we always use flash-attn for
    # the prefill. We have to branch on whether we use flash-attn v1 or v2.
    elif V2:
        out = torch.empty_like(query)
        if window_size_left <= 0 and window_size_left != -1:
            raise ValueError("`window_size_left` must be > 0 or -1")
239

240
241
        if softcap is None:
            softcap = 0.0
242

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        return flash_attn_2_cuda.varlen_fwd(
            query,
            # flashdecoding: pass the KV caches, paged: pass the KV.
            kv_cache.key if ATTENTION == "flashdecoding" else key,
            kv_cache.value if ATTENTION == "flashdecoding" else value,
            out,
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_k,
            None,
            None,
            block_tables if ATTENTION == "flashdecoding" else None,
            None,
            seqlen.max_q,
            seqlen.max_k,
            0.0,
258
            softmax_scale,
259
260
261
262
263
264
265
266
            False,
            causal,
            window_size_left,
            0,
            softcap,
            False,
            None,
        )[0]
267
268

    else:
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        if window_size_left != -1:
            raise NotImplementedError(
                "window_size_left is only available with flash attn v2"
            )
        if softcap is not None:
            raise NotImplementedError("softcap is not available in flash attn v1")

        # Flash attention v1 requires q, k and v to have the same number of heads
        if key.shape[1] != query.shape[1]:
            # MQA expand
            if key.shape[1] == 1:
                key = key.expand(-1, query.shape[1], -1)
            # Grouped attention reshape
            else:
                original_shape = key.shape
                key = (
                    key.unsqueeze(2)
                    .expand(-1, -1, query.shape[1] // key.shape[1], -1)
                    .reshape(original_shape[0], -1, original_shape[2])
288
                )
289
290
291
292
293
294
295
296
297
298
299
        if value.shape[1] != query.shape[1]:
            # MQA expand
            if value.shape[1] == 1:
                value = value.expand(-1, query.shape[1], -1)
            # Grouped attention reshape
            else:
                original_shape = value.shape
                value = (
                    value.unsqueeze(2)
                    .expand(-1, -1, query.shape[1] // value.shape[1], -1)
                    .reshape(original_shape[0], -1, original_shape[2])
300
301
                )

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        out = torch.empty_like(query)
        flash_attn_cuda.fwd(
            query,
            key,
            value,
            out,
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_q,
            seqlen.max_q,
            seqlen.max_k,
            0.0,
            softmax_scale,
            False,
            causal,
            False,
            0,
            None,
        )
        return out
321

322
323
324
325
326
327

__all__ = [
    "SUPPORTS_WINDOWING",
    "attention",
    "paged_attention",
]