tokens.py 18.9 KB
Newer Older
1
import re
2
from typing import List, Optional, Tuple
3

Nicolas Patry's avatar
Nicolas Patry committed
4
import torch
5
6
from text_generation_server.pb import generate_pb2
from text_generation_server.pb.generate_pb2 import FinishReason
7
from text_generation_server.utils.logits_process import (
8
    FrequencyPenaltyLogitsProcessor,
Nicolas Patry's avatar
Nicolas Patry committed
9
    HeterogeneousProcessorWrapper,
10
    HeterogeneousRepetitionPenaltyLogitsProcessor,
11
    HeterogeneousFrequencyPenaltyLogitsProcessor,
12
13
14
15
    HeterogeneousTemperatureLogitsWarper,
    HeterogeneousTopKLogitsWarper,
    HeterogeneousTopPLogitsWarper,
    HeterogeneousTypicalLogitsWarper,
Nicolas Patry's avatar
Nicolas Patry committed
16
    static_warper,
17
)
Nicolas Patry's avatar
Nicolas Patry committed
18
19
from text_generation_server.utils.watermark import WatermarkLogitsProcessor
from transformers import PreTrainedTokenizerBase, RepetitionPenaltyLogitsProcessor
20

OlivierDehaene's avatar
OlivierDehaene committed
21

22
23
24
25
26
27
class NextTokenChooser:
    def __init__(
        self,
        watermark=False,
        temperature=1.0,
        repetition_penalty=1.0,
28
        frequency_penalty=0.0,
29
30
31
32
33
34
35
36
37
38
39
40
        top_k=None,
        top_p=None,
        typical_p=None,
        do_sample=False,
        seed=0,
        device="cpu",
    ):
        self.watermark_processor = (
            WatermarkLogitsProcessor(device=device) if watermark else None
        )
        self.repetition_processor = (
            RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty)
41
42
43
44
45
46
            if repetition_penalty and repetition_penalty != 1.0
            else None
        )
        self.frequency_processor = (
            FrequencyPenaltyLogitsProcessor(penalty=frequency_penalty)
            if frequency_penalty and frequency_penalty != 0.0
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
            else None
        )

        has_warpers = (
            (temperature is not None and temperature != 1.0)
            or (top_k is not None and top_k != 0)
            or (top_p is not None and top_p < 1.0)
            or (typical_p is not None and typical_p < 1.0)
        )
        if has_warpers:
            self.static_warper = static_warper(
                temperature=temperature, top_k=top_k, top_p=top_p, typical_p=typical_p
            )
        else:
            self.static_warper = None

        sampling = do_sample or has_warpers
64
65
66
        self.choice = Sampling(seed, device) if sampling else Greedy()

    def __call__(self, input_ids, scores):
67
        if self.watermark_processor is not None:
68
            scores = self.watermark_processor(input_ids, scores)
69
        if self.repetition_processor is not None:
70
            scores = self.repetition_processor(input_ids, scores)
71
72
        if self.frequency_processor is not None:
            scores = self.frequency_processor(input_ids, scores)
73

74
75
76
77
        if self.static_warper is None:
            next_logprob = torch.log_softmax(scores, -1)
        else:
            scores, next_logprob = self.static_warper(scores)
78

79
        next_id = self.choice(scores[-1]).view(1, 1)
80

81
        return next_id, next_logprob
82
83
84

    @classmethod
    def from_pb(
85
86
87
        cls,
        pb: generate_pb2.NextTokenChooserParameters,
        device: torch.device,
88
89
    ) -> "NextTokenChooser":
        return NextTokenChooser(
90
            watermark=pb.watermark,
91
92
            temperature=pb.temperature,
            repetition_penalty=pb.repetition_penalty,
93
            frequency_penalty=pb.frequency_penalty,
94
95
            top_k=pb.top_k,
            top_p=pb.top_p,
96
            typical_p=pb.typical_p,
97
98
99
100
101
102
103
104
            do_sample=pb.do_sample,
            seed=pb.seed,
            device=device,
        )


class StopSequenceCriteria:
    def __init__(self, stop_sequence: str):
105
        stop_sequence = re.escape(stop_sequence)
106
        self.regex = re.compile(f"{stop_sequence}$")
107
108
109
110
111
112
113
114
115
116
117
118

    def __call__(self, output: str) -> bool:
        if self.regex.findall(output):
            return True
        return False


class StoppingCriteria:
    def __init__(
        self,
        eos_token_id: int,
        stop_sequence_criterias: List[StopSequenceCriteria],
119
120
        max_new_tokens: int = 20,
        ignore_eos_token: bool = False,
121
122
123
124
125
    ):
        self.eos_token_id = eos_token_id
        self.stop_sequence_criterias = stop_sequence_criterias
        self.max_new_tokens = max_new_tokens
        self.current_tokens = 0
126
        self.current_output = ""
127
        self.ignore_eos_token = ignore_eos_token
128
129
130
131
132
133

    def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]:
        self.current_tokens += 1
        if self.current_tokens >= self.max_new_tokens:
            return True, FinishReason.FINISH_REASON_LENGTH

134
        if not self.ignore_eos_token and last_token == self.eos_token_id:
135
136
            return True, FinishReason.FINISH_REASON_EOS_TOKEN

137
138
139
140
141
142
143
144
145
        if self.stop_sequence_criterias:
            self.current_output += last_output
            # There is no need to keep an output that is too long
            if len(self.current_output) > 300:
                # Slice to -200 to avoid doing it all the time
                self.current_output = self.current_output[-200:]
            for stop_sequence_criteria in self.stop_sequence_criterias:
                if stop_sequence_criteria(self.current_output):
                    return True, FinishReason.FINISH_REASON_STOP_SEQUENCE
146
147
148
149
150
151
152
153
154
155
156
157
158

        return False, None

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.StoppingCriteriaParameters,
        tokenizer: PreTrainedTokenizerBase,
    ) -> "StoppingCriteria":
        stop_sequence_criterias = [
            StopSequenceCriteria(sequence) for sequence in pb.stop_sequences
        ]
        return StoppingCriteria(
159
160
161
162
            tokenizer.eos_token_id,
            stop_sequence_criterias,
            pb.max_new_tokens,
            pb.ignore_eos_token,
163
        )
164

OlivierDehaene's avatar
OlivierDehaene committed
165
166
167
168
169
170
171
172

def create_n_gram_speculation(
    input_ids: torch.Tensor,
    next_ids: torch.Tensor,
    accepted_ids: torch.Tensor,
    speculate: int,
    verbose: bool,
):
Nicolas Patry's avatar
Nicolas Patry committed
173
174
175
176
177
178
    # Very trivial approach, find first match in the string.
    # This is much less refined than actual n-gram but seems to work
    # relatively OK in grounded mode and is by far much faster with
    # much less worst case complexity as everything happens on device.
    B = accepted_ids.shape[0]
    device = input_ids.device
OlivierDehaene's avatar
OlivierDehaene committed
179
    seeds = next_ids[accepted_ids.cumsum(dim=-1) - 1]
Nicolas Patry's avatar
Nicolas Patry committed
180
    indices = (input_ids == seeds.unsqueeze(-1)).max(dim=1).indices + 1
OlivierDehaene's avatar
OlivierDehaene committed
181
182
183
    all_indices = indices.unsqueeze(-1).expand(B, speculate) + torch.arange(
        speculate, device=device
    )
Nicolas Patry's avatar
Nicolas Patry committed
184
185
186
187
    all_indices = torch.clamp(all_indices, max=input_ids.shape[1] - 1)

    speculative_ids = input_ids.gather(dim=-1, index=all_indices)
    return speculative_ids
188

OlivierDehaene's avatar
OlivierDehaene committed
189

190
191
192
193
194
195
196
197
class HeterogeneousNextTokenChooser:
    def __init__(
        self,
        dtype: torch.dtype,
        device: torch.device,
        watermark: List[bool],
        temperature: List[float],
        repetition_penalty: List[float],
198
        frequency_penalty: List[float],
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        top_k: List[int],
        top_p: List[float],
        typical_p: List[float],
        do_sample: List[bool],
        seeds: List[int],
    ):
        warpers = []

        self.watermark_processor = (
            HeterogeneousProcessorWrapper(
                {
                    i: WatermarkLogitsProcessor(device=device)
                    for i, do_watermark in enumerate(watermark)
                    if do_watermark
                }
            )
            if any(watermark)
            else None
        )

        self.repetition_processor = (
            HeterogeneousRepetitionPenaltyLogitsProcessor(
                repetition_penalty, dtype, device
            )
            if any([x != 1.0 for x in repetition_penalty])
            else None
        )

227
228
229
230
231
232
233
234
        self.frequency_processor = (
            HeterogeneousFrequencyPenaltyLogitsProcessor(
                frequency_penalty, dtype, device
            )
            if any([x != 0.0 for x in frequency_penalty])
            else None
        )

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        if any([x != 1.0 for x in temperature]):
            do_sample = [
                sample or x != 1.0 for x, sample in zip(temperature, do_sample)
            ]
            warpers.append(
                HeterogeneousTemperatureLogitsWarper(temperature, dtype, device)
            )

        if any([x != 0 for x in top_k]):
            do_sample = [sample or x != 0 for x, sample in zip(top_k, do_sample)]
            warpers.append(HeterogeneousTopKLogitsWarper(top_k, device))

        if any([x < 1.0 for x in top_p]):
            do_sample = [sample or x < 1.0 for x, sample in zip(top_p, do_sample)]
            warpers.append(HeterogeneousTopPLogitsWarper(top_p, dtype, device))

        if any([x < 1.0 for x in typical_p]):
            do_sample = [sample or x < 1.0 for x, sample in zip(typical_p, do_sample)]
            warpers.append(HeterogeneousTypicalLogitsWarper(typical_p, dtype, device))

        self.warpers = warpers

        if any(do_sample):
            self.choice = HeterogeneousSampling(do_sample, seeds, device)
        else:
            self.choice = Greedy()

        self.seeds = seeds
        self.do_sample = do_sample
264
265
        self.dtype = dtype
        self.device = device
266

OlivierDehaene's avatar
OlivierDehaene committed
267
268
269
270
271
272
273
274
275
    def __call__(
        self,
        input_ids: torch.Tensor,
        scores: torch.Tensor,
        speculate: int,
        speculated_ids: Optional[torch.Tensor] = None,
        speculative_scores: Optional[torch.Tensor] = None,
        verbose=False,
    ):
Nicolas Patry's avatar
Nicolas Patry committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        if speculated_ids is not None:
            B = scores.shape[0] // (speculated_ids.shape[1] + 1)
            S = speculated_ids.shape[1] + 1
            scores = scores.view(B, S, -1)
        else:
            B = scores.shape[0]
            S = 1
            scores = scores.view(B, S, -1)

        next_ids = torch.zeros((B, S), device=scores.device, dtype=torch.long)
        for j in range(S):
            _scores = scores[:, j]
            if self.watermark_processor is not None:
                _scores = self.watermark_processor(input_ids, _scores)
            if self.repetition_processor is not None:
                _scores = self.repetition_processor(input_ids, _scores)
292
293
            if self.frequency_processor is not None:
                _scores = self.frequency_processor(input_ids, _scores)
Nicolas Patry's avatar
Nicolas Patry committed
294
295
296
297
298
299
300

            for warper in self.warpers:
                _scores = warper(input_ids, _scores)

            _next_ids = self.choice(_scores)
            scores[:, j] = _scores
            next_ids[:, j] = _next_ids
OlivierDehaene's avatar
OlivierDehaene committed
301
        next_ids = next_ids.view(B * S)
Nicolas Patry's avatar
Nicolas Patry committed
302
303
        allscores = scores.view(B * S, -1)
        alllogprobs = torch.log_softmax(allscores, -1)
Nicolas Patry's avatar
Nicolas Patry committed
304
305
306
307
308
309
310

        if speculated_ids is not None:
            accepted_ids = []
            B = next_ids.shape[0] // (speculated_ids.shape[1] + 1)
            S = speculated_ids.shape[1] + 1
            indices = []
            for i in range(B):
OlivierDehaene's avatar
OlivierDehaene committed
311
                _next_ids = next_ids[i * S : (i + 1) * S]
Nicolas Patry's avatar
Nicolas Patry committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
                _speculated_ids = speculated_ids[i]
                validate_speculative = _next_ids[:-1] == _speculated_ids
                index = i * S
                accepted = 1
                # First is always valid
                indices.append(index)
                for valid in validate_speculative.tolist():
                    if valid:
                        index += 1
                        accepted += 1
                        indices.append(index)
                    else:
                        break
                accepted_ids.append(accepted)

OlivierDehaene's avatar
OlivierDehaene committed
327
328
329
            accepted_ids = torch.tensor(
                accepted_ids, device=input_ids.device, dtype=input_ids.dtype
            )
Nicolas Patry's avatar
Nicolas Patry committed
330
            next_ids = next_ids[indices]
Nicolas Patry's avatar
Nicolas Patry committed
331
            logprobs = alllogprobs[indices]
Nicolas Patry's avatar
Nicolas Patry committed
332
333
334
335
336
            indices = torch.arange(B, device=input_ids.device) * S
            if speculative_scores is not None:
                speculative_scores = speculative_scores[indices + accepted_ids - 1]
        else:
            accepted_ids = torch.ones_like(next_ids)
Nicolas Patry's avatar
Nicolas Patry committed
337
            logprobs = alllogprobs
338

Nicolas Patry's avatar
Nicolas Patry committed
339
        next_logprobs = torch.gather(logprobs, 1, next_ids.view(-1, 1)).view(-1)
340

Nicolas Patry's avatar
Nicolas Patry committed
341
342
343
344
345
346
        if speculate > 0:
            if speculative_scores is not None:
                # Medusa provided some scores
                speculative_ids = Greedy()(speculative_scores)
            else:
                # n-gram
OlivierDehaene's avatar
OlivierDehaene committed
347
348
349
                speculative_ids = create_n_gram_speculation(
                    input_ids, next_ids, accepted_ids, speculate, verbose
                )
Nicolas Patry's avatar
Nicolas Patry committed
350
351
352
        else:
            speculative_ids = None

Nicolas Patry's avatar
Nicolas Patry committed
353
        return next_ids, next_logprobs, alllogprobs, accepted_ids, speculative_ids
354
355
356
357
358
359
360
361

    def filter(self, indices):
        if self.watermark_processor is not None:
            self.watermark_processor = self.watermark_processor.filter(indices)

        if self.repetition_processor is not None:
            self.repetition_processor = self.repetition_processor.filter(indices)

362
363
364
        if self.frequency_processor is not None:
            self.frequency_processor = self.frequency_processor.filter(indices)

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        filtered_warpers = []
        for warper in self.warpers:
            filtered_warper = warper.filter(indices)
            if filtered_warper is not None:
                filtered_warpers.append(filtered_warper)
        self.warpers = filtered_warpers

        self.seeds = [self.seeds[i] for i in indices]
        self.do_sample = [self.do_sample[i] for i in indices]

        if any(self.do_sample):
            self.choice.filter(indices)
        else:
            self.choice = Greedy()

        return self

    @classmethod
    def from_pb(
        cls,
        pb: List[generate_pb2.NextTokenChooserParameters],
        dtype: torch.dtype,
        device: torch.device,
    ) -> "HeterogeneousNextTokenChooser":
        return HeterogeneousNextTokenChooser(
            watermark=[pb_.watermark for pb_ in pb],
            temperature=[pb_.temperature for pb_ in pb],
            repetition_penalty=[pb_.repetition_penalty for pb_ in pb],
393
            frequency_penalty=[pb_.frequency_penalty for pb_ in pb],
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
            top_k=[pb_.top_k for pb_ in pb],
            top_p=[pb_.top_p for pb_ in pb],
            typical_p=[pb_.typical_p for pb_ in pb],
            do_sample=[pb_.do_sample for pb_ in pb],
            seeds=[pb_.seed for pb_ in pb],
            device=device,
            dtype=dtype,
        )


class Sampling:
    def __init__(self, seed: int, device: str = "cpu"):
        self.generator = torch.Generator(device)
        self.generator.manual_seed(seed)
        self.seed = seed

    def __call__(self, logits):
        probs = torch.nn.functional.softmax(logits, -1)
        # Avoid GPU<->CPU sync done by torch multinomial
        # See: https://github.com/pytorch/pytorch/blob/925a3788ec5c06db62ca732a0e9425a26a00916f/aten/src/ATen/native/Distributions.cpp#L631-L637
        q = torch.empty_like(probs).exponential_(1, generator=self.generator)
        return probs.div_(q).argmax()


class Greedy:
    def __call__(self, logits):
        return logits.argmax(dim=-1)


class HeterogeneousSampling:
    r"""
    Mixed greedy and probabilistic sampling. Compute both and pick the right one for each sample.
    """

    def __init__(self, do_sample: List[bool], seeds: List[int], device: torch.device):
        self.seeds = seeds

        self.greedy_indices = []
        self.sampling_mapping = {}
        for i, (sample, seed) in enumerate(zip(do_sample, seeds)):
            if sample:
                self.sampling_mapping[i] = Sampling(seed, device)
            else:
                self.greedy_indices.append(i)

        self.greedy = Greedy()

    def __call__(self, logits):
        out = torch.empty(logits.shape[0], dtype=torch.int64, device=logits.device)
        if self.greedy_indices:
            # Computing for all indices is faster than slicing
            torch.argmax(logits, -1, out=out)

        for i, sampling in self.sampling_mapping.items():
            out[i] = sampling(logits[i])
        return out

    def filter(self, indices):
        new_greedy_indices = []
        new_sampling_mapping = {}
        for i, idx in enumerate(indices):
            if idx in self.sampling_mapping:
                new_sampling_mapping[i] = self.sampling_mapping[idx]
            else:
                new_greedy_indices.append(i)

        self.greedy_indices = new_greedy_indices
        self.sampling_mapping = new_sampling_mapping
        return self
Nicolas Patry's avatar
Nicolas Patry committed
463
464
465


def batch_top_tokens(
466
467
468
469
    top_n_tokens: List[int],
    top_n_tokens_tensor: torch.Tensor,
    logprobs: torch.Tensor,
    accepted_ids: torch.Tensor,
Nicolas Patry's avatar
Nicolas Patry committed
470
) -> Tuple[List[List[List[int]]], List[List[List[float]]]]:
Nicolas Patry's avatar
Nicolas Patry committed
471
472
473
474
475
476
477
478
    """Find the top n most likely tokens for a batch of generations.

    When multiple tokens have equal probabilities and they don't all fit, the
    remaining tokens are also returned.
    """
    max_top_n = max(top_n_tokens)
    # Early exit when top_n_tokens is not used
    if max_top_n == 0:
Nicolas Patry's avatar
Nicolas Patry committed
479
480
481
482
483
        return [[[]]] * len(top_n_tokens), [[[]]] * len(top_n_tokens)

    batch_size = accepted_ids.shape[0]
    speculate_size = logprobs.shape[0] // batch_size
    top_n_tokens_tensor = top_n_tokens_tensor.repeat_interleave(speculate_size)
Nicolas Patry's avatar
Nicolas Patry committed
484
    # Ensure top_n doesn't exceed vocab size
485
486
487
488
489
    top_n_tokens = [
        min(tok, logprobs.size(-1))
        for tok in top_n_tokens
        for _ in range(speculate_size)
    ]
Nicolas Patry's avatar
Nicolas Patry committed
490
491
492

    # Parallel kthvalue adapted from https://discuss.pytorch.org/t/how-to-efficiently-get-the-k-th-largest-values-in-parallel/160529/2
    # Sorted topk is faster than torch.sort() since we only need a small subset
Nicolas Patry's avatar
Nicolas Patry committed
493
494
    sorted_top_k = torch.topk(logprobs, k=max_top_n, dim=-1, sorted=True).values

Nicolas Patry's avatar
Nicolas Patry committed
495
496
497
498
499
500
501
502
    nth_highest = torch.gather(
        sorted_top_k, 1, (top_n_tokens_tensor - 1).clip(min=0).unsqueeze(1)
    )
    nth_highest[nth_highest == -float("inf")] = torch.finfo(logprobs.dtype).min

    # Find the new "fuzzy" top n values
    top_n_indices = (logprobs >= nth_highest).nonzero()
    _, top_n_ishes = torch.unique_consecutive(top_n_indices[:, 0], return_counts=True)
OlivierDehaene's avatar
OlivierDehaene committed
503

504
    k = 1 if top_n_ishes.numel() == 0 else top_n_ishes.max()
Nicolas Patry's avatar
Nicolas Patry committed
505
    # Take a new topk for these new max n values
506
    top_k = torch.topk(logprobs, k=k, dim=1, sorted=True)
Nicolas Patry's avatar
Nicolas Patry committed
507
508
509
510
511

    top_n_ishes = top_n_ishes.tolist()
    top_indices = top_k.indices.tolist()
    top_values = top_k.values.tolist()

Nicolas Patry's avatar
Nicolas Patry committed
512
513
514
515
516
517
    batch_top_token_ids = []
    batch_top_token_logprobs = []
    accepted_ids_list = accepted_ids.tolist()
    for i, n_accepted_ids in enumerate(accepted_ids_list):
        start = speculate_size * i
        stop = speculate_size * (i + 1)
518
519
520
521
        _top_indices = top_indices[start:stop]
        _top_values = top_values[start:stop]
        _top_n_ishes = top_n_ishes[start:stop]
        _top_n_tokens = top_n_tokens[start:stop]
Nicolas Patry's avatar
Nicolas Patry committed
522
523
524
525
526
527
528
529
530

        _top_indices = _top_indices[:n_accepted_ids]
        _top_values = _top_values[:n_accepted_ids]
        _top_n_ishes = _top_n_ishes[:n_accepted_ids]
        _top_n_tokens = _top_n_tokens[:n_accepted_ids]

        row_top_token_ids = []
        row_top_token_logprobs = []

531
532
533
        for idxs, vals, n, req_n in zip(
            _top_indices, _top_values, _top_n_ishes, _top_n_tokens
        ):
Nicolas Patry's avatar
Nicolas Patry committed
534
535
536
537
538
539
540
541
542
543
            indices = idxs[:n] if req_n > 0 else []
            values = vals[:n] if req_n > 0 else []

            row_top_token_ids.append(indices)
            row_top_token_logprobs.append(values)

        batch_top_token_ids.append(row_top_token_ids)
        batch_top_token_logprobs.append(row_top_token_logprobs)

    return batch_top_token_ids, batch_top_token_logprobs