client.py 30.8 KB
Newer Older
1
2
3
4
5
import json
import requests

from aiohttp import ClientSession, ClientTimeout
from pydantic import ValidationError
drbh's avatar
drbh committed
6
from typing import Dict, Optional, List, AsyncIterator, Iterator, Union
7
8
9
10
11
12

from text_generation.types import (
    StreamResponse,
    Response,
    Request,
    Parameters,
drbh's avatar
drbh committed
13
    Grammar,
drbh's avatar
drbh committed
14
15
16
17
18
    ChatRequest,
    ChatCompletionChunk,
    ChatComplete,
    Message,
    Tool,
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
)
from text_generation.errors import parse_error


class Client:
    """Client to make calls to a text-generation-inference instance

     Example:

     ```python
     >>> from text_generation import Client

     >>> client = Client("https://api-inference.huggingface.co/models/bigscience/bloomz")
     >>> client.generate("Why is the sky blue?").generated_text
     ' Rayleigh scattering'

     >>> result = ""
     >>> for response in client.generate_stream("Why is the sky blue?"):
     >>>     if not response.token.special:
     >>>         result += response.token.text
     >>> result
    ' Rayleigh scattering'
     ```
    """

    def __init__(
45
46
47
48
49
        self,
        base_url: str,
        headers: Optional[Dict[str, str]] = None,
        cookies: Optional[Dict[str, str]] = None,
        timeout: int = 10,
50
51
52
53
54
55
56
    ):
        """
        Args:
            base_url (`str`):
                text-generation-inference instance base url
            headers (`Optional[Dict[str, str]]`):
                Additional headers
57
58
            cookies (`Optional[Dict[str, str]]`):
                Cookies to include in the requests
59
60
61
62
63
            timeout (`int`):
                Timeout in seconds
        """
        self.base_url = base_url
        self.headers = headers
64
        self.cookies = cookies
65
66
        self.timeout = timeout

drbh's avatar
drbh committed
67
68
69
    def chat(
        self,
        messages: List[Message],
70
        repetition_penalty: Optional[float] = None,
drbh's avatar
drbh committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        frequency_penalty: Optional[float] = None,
        logit_bias: Optional[List[float]] = None,
        logprobs: Optional[bool] = None,
        top_logprobs: Optional[int] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[float] = None,
        stream: bool = False,
        seed: Optional[int] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        tools: Optional[List[Tool]] = None,
        tool_choice: Optional[str] = None,
    ):
        """
        Given a list of messages, generate a response asynchronously

        Args:
            messages (`List[Message]`):
                List of messages
91
92
            repetition_penalty (`float`):
                The parameter for repetition penalty. 0.0 means no penalty. See [this
drbh's avatar
drbh committed
93
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
94
95
96
97
            frequency_penalty (`float`):
                The parameter for frequency penalty. 0.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
drbh's avatar
drbh committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
            logit_bias (`List[float]`):
                Adjust the likelihood of specified tokens
            logprobs (`bool`):
                Include log probabilities in the response
            top_logprobs (`int`):
                Include the `n` most likely tokens at each step
            max_tokens (`int`):
                Maximum number of generated tokens
            n (`int`):
                Generate `n` completions
            presence_penalty (`float`):
                The parameter for presence penalty. 0.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            stream (`bool`):
                Stream the response
            seed (`int`):
                Random sampling seed
            temperature (`float`):
                The value used to module the logits distribution.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation
            tools (`List[Tool]`):
                List of tools to use
            tool_choice (`str`):
                The tool to use

        """
        request = ChatRequest(
            model="tgi",
            messages=messages,
129
            repetition_penalty=repetition_penalty,
drbh's avatar
drbh committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
            frequency_penalty=frequency_penalty,
            logit_bias=logit_bias,
            logprobs=logprobs,
            top_logprobs=top_logprobs,
            max_tokens=max_tokens,
            n=n,
            presence_penalty=presence_penalty,
            stream=stream,
            seed=seed,
            temperature=temperature,
            top_p=top_p,
            tools=tools,
            tool_choice=tool_choice,
        )
        if not stream:
            resp = requests.post(
                f"{self.base_url}/v1/chat/completions",
                json=request.dict(),
                headers=self.headers,
                cookies=self.cookies,
                timeout=self.timeout,
            )
            payload = resp.json()
            if resp.status_code != 200:
                raise parse_error(resp.status_code, payload)
            return ChatComplete(**payload)
        else:
            return self._chat_stream_response(request)

    def _chat_stream_response(self, request):
        resp = requests.post(
            f"{self.base_url}/v1/chat/completions",
            json=request.dict(),
            headers=self.headers,
            cookies=self.cookies,
            timeout=self.timeout,
            stream=True,
        )
        # iterate and print stream
        for byte_payload in resp.iter_lines():
            if byte_payload == b"\n":
                continue
            payload = byte_payload.decode("utf-8")
            if payload.startswith("data:"):
                json_payload = json.loads(payload.lstrip("data:").rstrip("\n"))
                try:
                    response = ChatCompletionChunk(**json_payload)
                    yield response
                except ValidationError:
                    raise parse_error(resp.status, json_payload)

181
182
183
184
    def generate(
        self,
        prompt: str,
        do_sample: bool = False,
185
        max_new_tokens: int = 20,
186
        best_of: Optional[int] = None,
187
        repetition_penalty: Optional[float] = None,
188
        frequency_penalty: Optional[float] = None,
189
190
191
192
193
194
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
195
196
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
197
        watermark: bool = False,
198
        decoder_input_details: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
199
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
200
        grammar: Optional[Grammar] = None,
201
202
203
204
205
206
207
208
209
210
211
    ) -> Response:
        """
        Given a prompt, generate the following text

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
212
213
            best_of (`int`):
                Generate best_of sequences and return the one if the highest token logprobs
214
215
216
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
217
218
219
220
            frequency_penalty (`float`):
                The parameter for frequency penalty. 1.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
221
222
223
224
225
226
227
228
229
230
231
232
233
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
234
235
236
237
238
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
239
            watermark (`bool`):
240
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
241
242
            decoder_input_details (`bool`):
                Return the decoder input token logprobs and ids
Nicolas Patry's avatar
Nicolas Patry committed
243
244
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
245
246
247
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
248
249
250
251
252
253

        Returns:
            Response: generated response
        """
        # Validate parameters
        parameters = Parameters(
254
            best_of=best_of,
255
256
257
258
            details=True,
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
259
            frequency_penalty=frequency_penalty,
260
261
262
263
264
265
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
266
267
            truncate=truncate,
            typical_p=typical_p,
268
            watermark=watermark,
269
            decoder_input_details=decoder_input_details,
OlivierDehaene's avatar
OlivierDehaene committed
270
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
271
            grammar=grammar,
272
273
274
275
276
277
278
        )
        request = Request(inputs=prompt, stream=False, parameters=parameters)

        resp = requests.post(
            self.base_url,
            json=request.dict(),
            headers=self.headers,
279
            cookies=self.cookies,
280
281
282
283
284
285
286
287
288
289
290
            timeout=self.timeout,
        )
        payload = resp.json()
        if resp.status_code != 200:
            raise parse_error(resp.status_code, payload)
        return Response(**payload[0])

    def generate_stream(
        self,
        prompt: str,
        do_sample: bool = False,
291
        max_new_tokens: int = 20,
292
        repetition_penalty: Optional[float] = None,
293
        frequency_penalty: Optional[float] = None,
294
295
296
297
298
299
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
300
301
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
302
        watermark: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
303
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
304
        grammar: Optional[Grammar] = None,
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    ) -> Iterator[StreamResponse]:
        """
        Given a prompt, generate the following stream of tokens

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
319
320
321
322
            frequency_penalty (`float`):
                The parameter for frequency penalty. 1.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
323
324
325
326
327
328
329
330
331
332
333
334
335
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
336
337
338
339
340
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
341
            watermark (`bool`):
342
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
Nicolas Patry's avatar
Nicolas Patry committed
343
344
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
345
346
347
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
348
349
350
351
352
353

        Returns:
            Iterator[StreamResponse]: stream of generated tokens
        """
        # Validate parameters
        parameters = Parameters(
354
            best_of=None,
355
            details=True,
356
            decoder_input_details=False,
357
358
359
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
360
            frequency_penalty=frequency_penalty,
361
362
363
364
365
366
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
367
368
            truncate=truncate,
            typical_p=typical_p,
369
            watermark=watermark,
Nicolas Patry's avatar
Nicolas Patry committed
370
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
371
            grammar=grammar,
372
373
374
375
376
377
378
        )
        request = Request(inputs=prompt, stream=True, parameters=parameters)

        resp = requests.post(
            self.base_url,
            json=request.dict(),
            headers=self.headers,
379
            cookies=self.cookies,
380
            timeout=self.timeout,
381
            stream=True,
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
        )

        if resp.status_code != 200:
            raise parse_error(resp.status_code, resp.json())

        # Parse ServerSentEvents
        for byte_payload in resp.iter_lines():
            # Skip line
            if byte_payload == b"\n":
                continue

            payload = byte_payload.decode("utf-8")

            # Event data
            if payload.startswith("data:"):
                # Decode payload
                json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
                # Parse payload
                try:
                    response = StreamResponse(**json_payload)
                except ValidationError:
                    # If we failed to parse the payload, then it is an error payload
                    raise parse_error(resp.status_code, json_payload)
                yield response


class AsyncClient:
    """Asynchronous Client to make calls to a text-generation-inference instance

     Example:

     ```python
     >>> from text_generation import AsyncClient

     >>> client = AsyncClient("https://api-inference.huggingface.co/models/bigscience/bloomz")
     >>> response = await client.generate("Why is the sky blue?")
     >>> response.generated_text
     ' Rayleigh scattering'

     >>> result = ""
     >>> async for response in client.generate_stream("Why is the sky blue?"):
     >>>     if not response.token.special:
     >>>         result += response.token.text
     >>> result
    ' Rayleigh scattering'
     ```
    """

    def __init__(
431
432
433
434
435
        self,
        base_url: str,
        headers: Optional[Dict[str, str]] = None,
        cookies: Optional[Dict[str, str]] = None,
        timeout: int = 10,
436
437
438
439
440
441
442
    ):
        """
        Args:
            base_url (`str`):
                text-generation-inference instance base url
            headers (`Optional[Dict[str, str]]`):
                Additional headers
443
444
            cookies (`Optional[Dict[str, str]]`):
                Cookies to include in the requests
445
446
447
448
449
            timeout (`int`):
                Timeout in seconds
        """
        self.base_url = base_url
        self.headers = headers
450
        self.cookies = cookies
451
        self.timeout = ClientTimeout(timeout)
452

drbh's avatar
drbh committed
453
454
455
    async def chat(
        self,
        messages: List[Message],
456
        repetition_penalty: Optional[float] = None,
drbh's avatar
drbh committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        frequency_penalty: Optional[float] = None,
        logit_bias: Optional[List[float]] = None,
        logprobs: Optional[bool] = None,
        top_logprobs: Optional[int] = None,
        max_tokens: Optional[int] = None,
        n: Optional[int] = None,
        presence_penalty: Optional[float] = None,
        stream: bool = False,
        seed: Optional[int] = None,
        temperature: Optional[float] = None,
        top_p: Optional[float] = None,
        tools: Optional[List[Tool]] = None,
        tool_choice: Optional[str] = None,
    ) -> Union[ChatComplete, AsyncIterator[ChatCompletionChunk]]:
        """
        Given a list of messages, generate a response asynchronously

        Args:
            messages (`List[Message]`):
                List of messages
477
            repetition_penalty (`float`):
drbh's avatar
drbh committed
478
479
                The parameter for frequency penalty. 0.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
480
481
482
483
            frequency_penalty (`float`):
                The parameter for frequency penalty. 0.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
drbh's avatar
drbh committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
            logit_bias (`List[float]`):
                Adjust the likelihood of specified tokens
            logprobs (`bool`):
                Include log probabilities in the response
            top_logprobs (`int`):
                Include the `n` most likely tokens at each step
            max_tokens (`int`):
                Maximum number of generated tokens
            n (`int`):
                Generate `n` completions
            presence_penalty (`float`):
                The parameter for presence penalty. 0.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
            stream (`bool`):
                Stream the response
            seed (`int`):
                Random sampling seed
            temperature (`float`):
                The value used to module the logits distribution.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation
            tools (`List[Tool]`):
                List of tools to use
            tool_choice (`str`):
                The tool to use

        """
        request = ChatRequest(
            model="tgi",
            messages=messages,
515
            repetition_penalty=repetition_penalty,
drbh's avatar
drbh committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
            frequency_penalty=frequency_penalty,
            logit_bias=logit_bias,
            logprobs=logprobs,
            top_logprobs=top_logprobs,
            max_tokens=max_tokens,
            n=n,
            presence_penalty=presence_penalty,
            stream=stream,
            seed=seed,
            temperature=temperature,
            top_p=top_p,
            tools=tools,
            tool_choice=tool_choice,
        )
        if not stream:
            return await self._chat_single_response(request)
        else:
            return self._chat_stream_response(request)

    async def _chat_single_response(self, request):
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
            async with session.post(
                f"{self.base_url}/v1/chat/completions", json=request.dict()
            ) as resp:
                payload = await resp.json()
                if resp.status != 200:
                    raise parse_error(resp.status, payload)
                return ChatComplete(**payload)

    async def _chat_stream_response(self, request):
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
            async with session.post(
                f"{self.base_url}/v1/chat/completions", json=request.dict()
            ) as resp:
                async for byte_payload in resp.content:
                    if byte_payload == b"\n":
                        continue
                    payload = byte_payload.decode("utf-8")
                    if payload.startswith("data:"):
                        json_payload = json.loads(payload.lstrip("data:").rstrip("\n"))
                        try:
                            response = ChatCompletionChunk(**json_payload)
                            yield response
                        except ValidationError:
                            raise parse_error(resp.status, json_payload)

566
567
568
569
    async def generate(
        self,
        prompt: str,
        do_sample: bool = False,
570
        max_new_tokens: int = 20,
571
        best_of: Optional[int] = None,
572
        repetition_penalty: Optional[float] = None,
573
        frequency_penalty: Optional[float] = None,
574
575
576
577
578
579
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
580
581
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
582
        watermark: bool = False,
583
        decoder_input_details: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
584
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
585
        grammar: Optional[Grammar] = None,
586
587
588
589
590
591
592
593
594
595
596
    ) -> Response:
        """
        Given a prompt, generate the following text asynchronously

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
597
598
            best_of (`int`):
                Generate best_of sequences and return the one if the highest token logprobs
599
600
601
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
602
603
604
605
            frequency_penalty (`float`):
                The parameter for frequency penalty. 1.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
606
607
608
609
610
611
612
613
614
615
616
617
618
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
619
620
621
622
623
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
624
            watermark (`bool`):
625
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
626
627
            decoder_input_details (`bool`):
                Return the decoder input token logprobs and ids
Nicolas Patry's avatar
Nicolas Patry committed
628
629
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
630
631
632
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
633
634
635
636

        Returns:
            Response: generated response
        """
drbh's avatar
drbh committed
637

638
639
        # Validate parameters
        parameters = Parameters(
640
            best_of=best_of,
641
            details=True,
642
            decoder_input_details=decoder_input_details,
643
644
645
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
646
            frequency_penalty=frequency_penalty,
647
648
649
650
651
652
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
653
654
            truncate=truncate,
            typical_p=typical_p,
655
            watermark=watermark,
Nicolas Patry's avatar
Nicolas Patry committed
656
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
657
            grammar=grammar,
658
659
660
        )
        request = Request(inputs=prompt, stream=False, parameters=parameters)

661
662
663
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
664
665
666
667
668
669
670
671
672
673
674
            async with session.post(self.base_url, json=request.dict()) as resp:
                payload = await resp.json()

                if resp.status != 200:
                    raise parse_error(resp.status, payload)
                return Response(**payload[0])

    async def generate_stream(
        self,
        prompt: str,
        do_sample: bool = False,
675
        max_new_tokens: int = 20,
676
        repetition_penalty: Optional[float] = None,
677
        frequency_penalty: Optional[float] = None,
678
679
680
681
682
683
        return_full_text: bool = False,
        seed: Optional[int] = None,
        stop_sequences: Optional[List[str]] = None,
        temperature: Optional[float] = None,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
684
685
        truncate: Optional[int] = None,
        typical_p: Optional[float] = None,
686
        watermark: bool = False,
Nicolas Patry's avatar
Nicolas Patry committed
687
        top_n_tokens: Optional[int] = None,
drbh's avatar
drbh committed
688
        grammar: Optional[Grammar] = None,
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    ) -> AsyncIterator[StreamResponse]:
        """
        Given a prompt, generate the following stream of tokens asynchronously

        Args:
            prompt (`str`):
                Input text
            do_sample (`bool`):
                Activate logits sampling
            max_new_tokens (`int`):
                Maximum number of generated tokens
            repetition_penalty (`float`):
                The parameter for repetition penalty. 1.0 means no penalty. See [this
                paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
703
704
705
706
            frequency_penalty (`float`):
                The parameter for frequency penalty. 1.0 means no penalty
                Penalize new tokens based on their existing frequency in the text so far,
                decreasing the model's likelihood to repeat the same line verbatim.
707
708
709
710
711
712
713
714
715
716
717
718
719
            return_full_text (`bool`):
                Whether to prepend the prompt to the generated text
            seed (`int`):
                Random sampling seed
            stop_sequences (`List[str]`):
                Stop generating tokens if a member of `stop_sequences` is generated
            temperature (`float`):
                The value used to module the logits distribution.
            top_k (`int`):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (`float`):
                If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
                higher are kept for generation.
720
721
722
723
724
            truncate (`int`):
                Truncate inputs tokens to the given size
            typical_p (`float`):
                Typical Decoding mass
                See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
725
            watermark (`bool`):
726
                Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
Nicolas Patry's avatar
Nicolas Patry committed
727
728
            top_n_tokens (`int`):
                Return the `n` most likely tokens at each step
729
730
731
            grammar (`Grammar`):
                Whether to use a grammar for the generation and the grammar to use. Grammars will constrain the generation
                of the text to match a regular expression or JSON schema.
732
733
734
735
736
737

        Returns:
            AsyncIterator[StreamResponse]: stream of generated tokens
        """
        # Validate parameters
        parameters = Parameters(
738
            best_of=None,
739
            details=True,
740
            decoder_input_details=False,
741
742
743
            do_sample=do_sample,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
744
            frequency_penalty=frequency_penalty,
745
746
747
748
749
750
            return_full_text=return_full_text,
            seed=seed,
            stop=stop_sequences if stop_sequences is not None else [],
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
751
752
            truncate=truncate,
            typical_p=typical_p,
753
            watermark=watermark,
Nicolas Patry's avatar
Nicolas Patry committed
754
            top_n_tokens=top_n_tokens,
drbh's avatar
drbh committed
755
            grammar=grammar,
756
757
758
        )
        request = Request(inputs=prompt, stream=True, parameters=parameters)

759
760
761
        async with ClientSession(
            headers=self.headers, cookies=self.cookies, timeout=self.timeout
        ) as session:
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
            async with session.post(self.base_url, json=request.dict()) as resp:
                if resp.status != 200:
                    raise parse_error(resp.status, await resp.json())

                # Parse ServerSentEvents
                async for byte_payload in resp.content:
                    # Skip line
                    if byte_payload == b"\n":
                        continue

                    payload = byte_payload.decode("utf-8")

                    # Event data
                    if payload.startswith("data:"):
                        # Decode payload
                        json_payload = json.loads(payload.lstrip("data:").rstrip("/n"))
                        # Parse payload
                        try:
                            response = StreamResponse(**json_payload)
                        except ValidationError:
                            # If we failed to parse the payload, then it is an error payload
                            raise parse_error(resp.status, json_payload)
                        yield response