rocm.py 8.68 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import torch
from text_generation_server.utils.import_utils import SYSTEM
from loguru import logger

major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
_PARTITION_SIZE = 512

use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"}
ENGINE = "triton" if use_triton else "ck"

try:
    from vllm._C import cache_ops
    from vllm._C import ops
except Exception as e:
    raise ImportError(
        f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
    )


def reshape_and_cache(
    key: torch.Tensor,
    value: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    slots: torch.Tensor,
):
    cache_ops.reshape_and_cache(key, value, key_cache, value_cache, slots, "auto", 1.0)


def paged_attention(
    out: torch.Tensor,
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    kv_head_mapping: torch.Tensor,
    softmax_scale: float,
    block_tables: torch.Tensor,
    input_lengths: torch.Tensor,
    max_s: int,
):
    # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
    # Copyright 2023 The vLLM team. All rights
    # reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #

    # value_cache => [num_blocks, num_heads, head_size, block_size]
    block_size = value_cache.shape[3]
    num_seqs, num_heads, head_size = query.shape
    max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE

    # NOTE(woosuk): We use a simple heuristic to decide whether to use
    # PagedAttention V1 or V2. If the number of partitions is 1, we use
    # V1 to avoid the overhead of reduction. Also, if the number of
    # sequences or heads is large, we use V1 since there is enough work
    # to parallelize.
    from vllm._C import ops

    use_v1 = max_s <= 8192 and (max_num_partitions == 1 or num_seqs * num_heads > 512)
    if use_v1:
        ops.paged_attention_v1(
            out,
            query,
            key_cache,
            value_cache,
            kv_head_mapping,
            softmax_scale,
            block_tables,
            input_lengths,
            block_size,
            max_s,
            None,
            "auto",
            1.0,
        )
    else:
        # Run PagedAttention V2.
        assert _PARTITION_SIZE % block_size == 0
        tmp_output = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions, head_size),
            dtype=out.dtype,
            device=out.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions),
            dtype=torch.float32,
            device=out.device,
        )
        max_logits = torch.empty_like(exp_sums)

        ops.paged_attention_v2(
            out,
            exp_sums,
            max_logits,
            tmp_output,
            query,
            key_cache,
            value_cache,
            kv_head_mapping,
            softmax_scale,
            block_tables,
            input_lengths,
            block_size,
            max_s,
            None,
            "auto",
            1.0,
        )


if ENGINE != "triton":
    try:
        import flash_attn_2_cuda

        logger.info("ROCm: using Flash Attention 2 Composable Kernel implementation.")
    except ImportError:
        try:
            import flash_attn_cuda

            ENGINE = "v1"
            logger.info("ROCm: using Flash Attention 1")
        except ImportError as e:
            if major >= 8:
                architecture_suffix = f"-{SYSTEM}"
                raise ImportError(
                    "Flash Attention V2 is not installed.\n"
                    "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                    f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
                )
            elif is_sm75:
                raise ImportError(
                    "Flash Attention is not installed.\n"
                    "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                    "or install flash attention with `cd server && make install install-flash-attention`"
                ) from e
            else:

                for idx in range(torch.cuda.device_count()):
                    name = torch.cuda.get_device_name(idx)
                    if "MI210" not in name and "MI250" not in name:
                        raise ImportError(
                            f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention"
                        )
                raise ImportError(
                    f"AMD GPU with ROCm capability {major} {minor} is not supported"
                ) from e


SUPPORTS_WINDOWING = ENGINE != "v1"
if ENGINE == "ck":

    def attention(
        q,
        k,
        v,
        out,
        cu_seqlens,
        max_s,
        softmax_scale,
        window_size_left=-1,
        causal=True,
    ):
        if window_size_left <= 0 and window_size_left != -1:
            raise ValueError("`window_size_left` must be > 0 or -1")
        if window_size_left != -1:
            raise ValueError(
                f"ROCm version of Flash Attention v2 does not support window attention (window_size_left != -1, got window_size_left={window_size_left})."
            )
        return flash_attn_2_cuda.varlen_fwd(
            q,
            k,
            v,
            out,
            cu_seqlens,
            cu_seqlens,
            None,
            None,
            None,
            max_s,
            max_s,
            0.0,
            softmax_scale,
            False,
            causal,
            window_size_left,
            0,
            False,
            None,
        )

elif ENGINE == "triton":
    from .flash_attn_triton import triton_attention

    def attention(
        q,
        k,
        v,
        out,
        cu_seqlens,
        max_s,
        softmax_scale,
        window_size_left=-1,
        causal=True,
    ):
        if window_size_left != -1:
            raise ValueError(
                f"RoCm version of Flash Attention v2 does not support window attention (window_size_left != -1, got window_size_left={window_size_left})."
            )
        output, _ = triton_attention(
            q,
            k,
            v,
            out,
            cu_seqlens,
            cu_seqlens,
            max_s,
            max_s,
            causal,
            softmax_scale,
        )
        return output

else:

    def attention(
        q,
        k,
        v,
        out,
        cu_seqlens,
        max_s,
        softmax_scale,
        window_size_left=-1,
    ):
        if window_size_left != -1:
            raise NotImplementedError(
                "window_size_left is only available with flash attn v2"
            )

        # Flash attention v1 requires q, k and v to have the same number of heads
        if k.shape[1] != q.shape[1]:
            # MQA expand
            if k.shape[1] == 1:
                k = k.expand(-1, q.shape[1], -1)
            # Grouped attention reshape
            else:
                original_shape = k.shape
                k = (
                    k.unsqueeze(2)
                    .expand(-1, -1, q.shape[1] // k.shape[1], -1)
                    .reshape(original_shape[0], -1, original_shape[2])
                )
        if v.shape[1] != q.shape[1]:
            # MQA expand
            if v.shape[1] == 1:
                v = v.expand(-1, q.shape[1], -1)
            # Grouped attention reshape
            else:
                original_shape = v.shape
                v = (
                    v.unsqueeze(2)
                    .expand(-1, -1, q.shape[1] // v.shape[1], -1)
                    .reshape(original_shape[0], -1, original_shape[2])
                )

        return flash_attn_cuda.fwd(
            q,
            k,
            v,
            out,
            cu_seqlens,
            cu_seqlens,
            max_s,
            max_s,
            0.0,
            softmax_scale,
            False,
            True,
            False,
            0,
            None,
        )