flash_gpt2.py 2.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import torch
import torch.distributed

from opentelemetry import trace
from transformers import AutoConfig, AutoTokenizer, GenerationConfig
from transformers.models.gpt2 import GPT2Tokenizer
from typing import Optional

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
    FlashGPT2ForCausalLM,
)
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)
Nicolas Patry's avatar
Nicolas Patry committed
18
from text_generation_server.utils.import_utils import SYSTEM
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

tracer = trace.get_tracer(__name__)


class FlashGPT2(FlashCausalLM):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        speculator: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.float16 if dtype is None else dtype
Nicolas Patry's avatar
Nicolas Patry committed
37
38
39
        elif SYSTEM == "ipex":
            if hasattr(torch, "xpu") and torch.xpu.is_available():
                device = torch.device(f"xpu:{rank}")
Wang, Yi's avatar
Wang, Yi committed
40
                dtype = torch.float16 if dtype is None else dtype
Nicolas Patry's avatar
Nicolas Patry committed
41
42
            else:
                device = torch.device("cpu")
Wang, Yi's avatar
Wang, Yi committed
43
                dtype = torch.bfloat16 if dtype is None else dtype
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        else:
            raise NotImplementedError("FlashGPT2 is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )

        config = AutoConfig.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
        config.speculator = speculator

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
65
        if config.quantize in ["gptq", "awq", "marlin"]:
66
67
68
69
70
71
            weights._set_gptq_params(model_id, revision)

        prefix = ""
        model = FlashGPT2ForCausalLM(prefix, config, weights)
        torch.distributed.barrier(group=self.process_group)
        super(FlashGPT2, self).__init__(
drbh's avatar
drbh committed
72
            model_id=model_id,
73
74
75
76
77
78
79
80
81
82
            model=model,
            tokenizer=tokenizer,
            num_layers=len(model.model.layers),
            num_kv_heads=model.model.num_heads,
            head_size=model.model.head_size,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
        )