flash_gemma.py 2.41 KB
Newer Older
1
2
3
4
5
import torch
import torch.distributed

from opentelemetry import trace
from typing import Optional
drbh's avatar
drbh committed
6
from transformers import AutoConfig, AutoTokenizer
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
    FlashGemmaForCausalLM,
)
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)

tracer = trace.get_tracer(__name__)


class FlashGemma(FlashCausalLM):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
Nicolas Patry's avatar
Nicolas Patry committed
27
        speculator: Optional[str] = None,
28
29
30
31
32
33
34
35
36
37
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.bfloat16 if dtype is None else dtype
        else:
            raise NotImplementedError("FlashGemma is only available on GPU")

drbh's avatar
drbh committed
38
        tokenizer = AutoTokenizer.from_pretrained(
39
40
41
42
43
44
45
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )

drbh's avatar
drbh committed
46
        config = AutoConfig.from_pretrained(
47
48
49
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
Nicolas Patry's avatar
Nicolas Patry committed
50
        config.speculator = speculator
51
52
53
54
55

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
56
        if config.quantize in ["gptq", "awq", "marlin"]:
57
58
            weights._set_gptq_params(model_id, revision)

drbh's avatar
drbh committed
59
        # TODO hardcoded
60
        prefix = ""
drbh's avatar
drbh committed
61
        model = FlashGemmaForCausalLM(prefix, config, weights, causal=True)
62
63
64

        torch.distributed.barrier(group=self.process_group)
        super(FlashGemma, self).__init__(
drbh's avatar
drbh committed
65
            model_id=model_id,
66
67
68
69
70
71
72
73
74
75
            model=model,
            tokenizer=tokenizer,
            num_layers=len(model.model.layers),
            num_kv_heads=model.model.num_key_value_heads,
            head_size=model.model.head_size,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
        )