test_seq2seq_lm.py 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import pytest
import torch

from copy import copy

from text_generation.pb import generate_pb2
from text_generation.models.seq2seq_lm import Seq2SeqLM, Seq2SeqLMBatch


@pytest.fixture
def default_pb_request(default_pb_parameters):
    return generate_pb2.Request(
        id=0,
        inputs="Test",
        input_length=2,
        parameters=default_pb_parameters,
        max_new_tokens=10,
    )


@pytest.fixture
def default_pb_batch(default_pb_request):
    return generate_pb2.Batch(id=0, requests=[default_pb_request], size=1)


@pytest.fixture
def default_seq2seq_lm_batch(default_pb_batch, mt0_small_tokenizer):
    return Seq2SeqLMBatch.from_pb(
        default_pb_batch, mt0_small_tokenizer, torch.device("cpu")
    )


@pytest.fixture
def default_multi_requests_seq2seq_lm_batch(default_pb_request, mt0_small_tokenizer):
    req_0 = copy(default_pb_request)
    req_1 = default_pb_request
    req_1.id = 1
    req_1.max_new_tokens = 5

    batch_pb = generate_pb2.Batch(id=0, requests=[req_0, req_1], size=2)
    return Seq2SeqLMBatch.from_pb(batch_pb, mt0_small_tokenizer, torch.device("cpu"))


@pytest.fixture(scope="session")
def default_seq2seq_lm():
    return Seq2SeqLM("bigscience/mt0-small")


def test_batch_from_pb(default_pb_batch, default_seq2seq_lm_batch):
    batch = default_seq2seq_lm_batch

    assert batch.batch_id == default_pb_batch.id
    assert batch.requests == default_pb_batch.requests

    assert batch.input_ids.shape == (default_pb_batch.size, 8)
    assert batch.input_ids[0][-2] == 4268
    assert batch.input_ids[0][-1] == 1
    assert torch.all(batch.input_ids[0][:-2] == 0)

    assert torch.all(batch.attention_mask[0][-2:] == 1)
    assert torch.all(batch.attention_mask[0][:-2] == 0)

    assert batch.decoder_input_ids.shape == (default_pb_batch.size, 1)
    assert batch.decoder_attention_mask is None
    assert batch.encoder_last_hidden_state is None

    assert batch.past_key_values is None

    assert batch.input_lengths == [2]
    assert batch.decoder_input_lengths == [1]

    assert batch.size == default_pb_batch.size
    assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == batch.size

    assert batch.max_input_length == batch.input_lengths[0]
    assert batch.max_decoder_input_length == batch.decoder_input_lengths[0]


def test_batch_concatenate_no_prefill(default_seq2seq_lm_batch):
    with pytest.raises(ValueError):
        Seq2SeqLMBatch.concatenate([default_seq2seq_lm_batch, default_seq2seq_lm_batch])


def test_seq2seq_lm_batch_type(default_seq2seq_lm):
    assert default_seq2seq_lm.batch_type == Seq2SeqLMBatch


def test_seq2seq_lm_generate_token(default_seq2seq_lm, default_seq2seq_lm_batch):
    generated_texts, next_batch = default_seq2seq_lm.generate_token(
        default_seq2seq_lm_batch
    )

    assert generated_texts == []
    assert isinstance(next_batch, Seq2SeqLMBatch)

    assert torch.equal(next_batch.input_ids, default_seq2seq_lm_batch.input_ids)
    assert torch.equal(
        next_batch.attention_mask, default_seq2seq_lm_batch.attention_mask
    )
    assert next_batch.input_lengths == default_seq2seq_lm_batch.input_lengths
    assert next_batch.max_input_length == default_seq2seq_lm_batch.max_input_length
    assert (
        next_batch.next_token_choosers == default_seq2seq_lm_batch.next_token_choosers
    )
    assert next_batch.stopping_criterias == default_seq2seq_lm_batch.stopping_criterias

    assert next_batch.decoder_input_ids.shape == (next_batch.size, 2)
    assert next_batch.decoder_input_ids[0, 0] == 0
    assert next_batch.decoder_input_ids[0, 1] == 259
    assert next_batch.decoder_attention_mask is None
    assert next_batch.encoder_last_hidden_state.shape == (1, 8, 512)

    assert next_batch.decoder_input_lengths == [2]
    assert next_batch.max_decoder_input_length == 2

    assert next_batch.past_key_values is not None
    assert all(
        [p[0].shape == (next_batch.size, 6, 1, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [p[1].shape == (next_batch.size, 6, 1, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [p[2].shape == (next_batch.size, 6, 8, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [p[3].shape == (next_batch.size, 6, 8, 64) for p in next_batch.past_key_values]
    )


def test_seq2seq_lm_generate_token_completion(
    default_seq2seq_lm, default_seq2seq_lm_batch
):
    next_batch = default_seq2seq_lm_batch
    for _ in range(6):
        generated_texts, next_batch = default_seq2seq_lm.generate_token(next_batch)
        assert generated_texts == []

    generated_texts, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is None

    assert len(generated_texts) == 1
    assert generated_texts[0].output == "a few weeks"
    assert generated_texts[0].request == default_seq2seq_lm_batch.requests[0]
    assert generated_texts[0].tokens == 7


def test_seq2seq_lm_generate_token_completion_multi(
    default_seq2seq_lm, default_multi_requests_seq2seq_lm_batch
):
    next_batch = default_multi_requests_seq2seq_lm_batch

    for i in range(4):
        generated_texts, next_batch = default_seq2seq_lm.generate_token(next_batch)
        assert generated_texts == []

    generated_texts, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is not None

    assert len(generated_texts) == 1
    assert generated_texts[0].output == "a few "
    assert (
        generated_texts[0].request
        == default_multi_requests_seq2seq_lm_batch.requests[1]
    )
    assert generated_texts[0].tokens == 5

    generated_texts, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert generated_texts == []

    generated_texts, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is None

    assert len(generated_texts) == 1
    assert generated_texts[0].output == "a few weeks"
    assert (
        generated_texts[0].request
        == default_multi_requests_seq2seq_lm_batch.requests[0]
    )
    assert generated_texts[0].tokens == 7


def test_batch_concatenate(
    default_seq2seq_lm,
    default_seq2seq_lm_batch,
    default_multi_requests_seq2seq_lm_batch,
):
    next_batch_0 = default_seq2seq_lm_batch
    _, next_batch_0 = default_seq2seq_lm.generate_token(next_batch_0)
    _, next_batch_0 = default_seq2seq_lm.generate_token(next_batch_0)

    next_batch_1 = default_multi_requests_seq2seq_lm_batch
    _, next_batch_1 = default_seq2seq_lm.generate_token(next_batch_1)

    next_batch = Seq2SeqLMBatch.concatenate([next_batch_0, next_batch_1])

    assert next_batch.batch_id == 0

    assert torch.all(next_batch.input_ids[:, 0] == 4268)
    assert torch.all(next_batch.input_ids[:, 1] == 1)

    assert torch.all(next_batch.attention_mask == 1)

    assert torch.equal(
        next_batch.decoder_input_ids[0], next_batch_0.decoder_input_ids[0]
    )
    assert torch.all(next_batch.decoder_input_ids[1:, 0] == 0)
    assert torch.equal(
        next_batch.decoder_input_ids[1:, -2:], next_batch_1.decoder_input_ids
    )

    assert torch.all(next_batch.decoder_attention_mask[0] == 1)
    assert torch.all(next_batch.decoder_attention_mask[1:, 0] == 0)
    assert torch.all(next_batch.decoder_attention_mask[1:, -2:] == 1)

    assert torch.equal(
        next_batch.encoder_last_hidden_state[0],
        next_batch_0.encoder_last_hidden_state[0, -2:],
    )
    assert torch.equal(
        next_batch.encoder_last_hidden_state[1:],
        next_batch_1.encoder_last_hidden_state[:, -2:],
    )

    assert next_batch.input_lengths == [2, 2, 2]
    assert next_batch.decoder_input_lengths == [3, 2, 2]
    assert next_batch.max_input_length == 2
    assert next_batch.max_decoder_input_length == 3

    assert next_batch.requests[0] == next_batch_0.requests[0]
    assert next_batch.requests[1:] == next_batch_1.requests

    assert next_batch.next_token_choosers[0] == next_batch_0.next_token_choosers[0]
    assert next_batch.next_token_choosers[1:] == next_batch_1.next_token_choosers

    assert next_batch.stopping_criterias[0] == next_batch_0.stopping_criterias[0]
    assert next_batch.stopping_criterias[1:] == next_batch_1.stopping_criterias

    assert next_batch.past_key_values is not None
    assert all(
        [p[0].shape == (next_batch.size, 6, 2, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [p[1].shape == (next_batch.size, 6, 2, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [p[2].shape == (next_batch.size, 6, 2, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [p[3].shape == (next_batch.size, 6, 2, 64) for p in next_batch.past_key_values]
    )

    for i, past in enumerate(next_batch.past_key_values):
        assert torch.equal(next_batch_0.past_key_values[i][0][0, :, -2:, :], past[0][0])
        assert torch.equal(
            next_batch_1.past_key_values[i][0][:, :, -1:, :], past[0][1:, :, -1:, :]
        )

        assert torch.equal(next_batch_0.past_key_values[i][1][0, :, -2:, :], past[1][0])
        assert torch.equal(
            next_batch_1.past_key_values[i][1][:, :, -1:, :], past[1][1:, :, -1:, :]
        )

        assert torch.equal(next_batch_0.past_key_values[i][2][0, :, -2:, :], past[2][0])
        assert torch.equal(
            next_batch_1.past_key_values[i][2][:, :, -2:, :], past[2][1:]
        )

        assert torch.equal(next_batch_0.past_key_values[i][3][0, :, -2:, :], past[3][0])
        assert torch.equal(
            next_batch_1.past_key_values[i][3][:, :, -2:, :], past[3][1:]
        )

    for _ in range(3):
        generated_texts, next_batch = default_seq2seq_lm.generate_token(next_batch)
        assert generated_texts == []

    generated_texts, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is not None

    assert len(generated_texts) == 1
    assert generated_texts[0].output == "a few "
    assert (
        generated_texts[0].request
        == default_multi_requests_seq2seq_lm_batch.requests[1]
    )
    assert generated_texts[0].tokens == 5

    generated_texts, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is not None

    assert len(generated_texts) == 1
    assert generated_texts[0].output == "a few weeks"
    assert generated_texts[0].request == default_seq2seq_lm_batch.requests[0]
    assert generated_texts[0].tokens == 7

    generated_texts, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is None

    assert len(generated_texts) == 1
    assert generated_texts[0].output == "a few weeks"
    assert (
        generated_texts[0].request
        == default_multi_requests_seq2seq_lm_batch.requests[0]
    )
    assert generated_texts[0].tokens == 7