Commit 8568630b authored by Yizhou Wang's avatar Yizhou Wang
Browse files

add training time to tensorboard

parent cc8336e3
...@@ -231,24 +231,29 @@ if __name__ == "__main__": ...@@ -231,24 +231,29 @@ if __name__ == "__main__":
loss_confmap = criterion(confmap_preds, confmap_gt.float().cuda()) loss_confmap = criterion(confmap_preds, confmap_gt.float().cuda())
loss_confmap.backward() loss_confmap.backward()
optimizer.step() optimizer.step()
tic_back = time.time()
loss_ave = np.average([loss_ave, loss_confmap.item()], weights=[iter_count, 1]) loss_ave = np.average([loss_ave, loss_confmap.item()], weights=[iter_count, 1])
if iter % config_dict['train_cfg']['log_step'] == 0: if iter % config_dict['train_cfg']['log_step'] == 0:
# print statistics # print statistics
print('epoch %2d, iter %4d: loss: %.6f (%.4f) | load time: %.2f | backward time: %.2f' % load_time = tic - tic_load
(epoch + 1, iter + 1, loss_confmap.item(), loss_ave, tic - tic_load, time.time() - tic)) back_time = tic_back - tic
print('epoch %2d, iter %4d: loss: %.4f (%.4f) | load time: %.2f | back time: %.2f' %
(epoch + 1, iter + 1, loss_confmap.item(), loss_ave, load_time, back_time))
with open(train_log_name, 'a+') as f_log: with open(train_log_name, 'a+') as f_log:
f_log.write('epoch %2d, iter %4d: loss: %.6f (%.4f) | load time: %.2f | backward time: %.2f\n' % f_log.write('epoch %2d, iter %4d: loss: %.4f (%.4f) | load time: %.2f | back time: %.2f\n' %
(epoch + 1, iter + 1, loss_confmap.item(), loss_ave, tic - tic_load, time.time() - tic)) (epoch + 1, iter + 1, loss_confmap.item(), loss_ave, load_time, back_time))
writer.add_scalar('loss/loss_all', loss_confmap.item(), iter_count)
writer.add_scalar('loss/loss_ave', loss_ave, iter_count)
writer.add_scalar('time/time_load', load_time, iter_count)
writer.add_scalar('time/time_back', back_time, iter_count)
if stacked_num is not None: if stacked_num is not None:
writer.add_scalar('loss/loss_all', loss_confmap.item(), iter_count)
confmap_pred = confmap_preds[stacked_num - 1].cpu().detach().numpy() confmap_pred = confmap_preds[stacked_num - 1].cpu().detach().numpy()
else: else:
writer.add_scalar('loss/loss_all', loss_confmap.item(), iter_count)
confmap_pred = confmap_preds.cpu().detach().numpy() confmap_pred = confmap_preds.cpu().detach().numpy()
writer.add_scalar('loss/loss_ave', loss_ave, iter_count)
if 'mnet_cfg' in model_cfg: if 'mnet_cfg' in model_cfg:
chirp_amp_curr = chirp_amp(data.numpy()[0, :, 0, 0, :, :], radar_configs['data_type']) chirp_amp_curr = chirp_amp(data.numpy()[0, :, 0, 0, :, :], radar_configs['data_type'])
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment