"git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "f96deba0f834d7b9566e8f3c1783d9e0a1c5b5af"
Commit 66101bd4 authored by fengzch-das's avatar fengzch-das
Browse files

fix: AT_CHECK has been deprecated

parent 8873a510
Pipeline #2952 canceled with stages
...@@ -63,26 +63,26 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput, ...@@ -63,26 +63,26 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
at::Tensor weight, int kH, int kW, int dH, int dW, int padH, at::Tensor weight, int kH, int kW, int dH, int dW, int padH,
int padW, int dilationH, int dilationW, int group, int padW, int dilationH, int dilationW, int group,
int deformable_group) { int deformable_group) {
AT_CHECK(weight.ndimension() == 4, TORCH_CHECK(weight.ndimension() == 4,
"4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, " "4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, "
"but got: %s", "but got: %s",
weight.ndimension()); weight.ndimension());
AT_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
AT_CHECK(kW > 0 && kH > 0, TORCH_CHECK(kW > 0 && kH > 0,
"kernel size should be greater than zero, but got kH: %d kW: %d", kH, "kernel size should be greater than zero, but got kH: %d kW: %d", kH,
kW); kW);
AT_CHECK((weight.size(2) == kH && weight.size(3) == kW), TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW),
"kernel size should be consistent with weight, ", "kernel size should be consistent with weight, ",
"but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d", kH, "but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d", kH,
kW, weight.size(2), weight.size(3)); kW, weight.size(2), weight.size(3));
AT_CHECK(dW > 0 && dH > 0, TORCH_CHECK(dW > 0 && dH > 0,
"stride should be greater than zero, but got dH: %d dW: %d", dH, dW); "stride should be greater than zero, but got dH: %d dW: %d", dH, dW);
AT_CHECK( TORCH_CHECK(
dilationW > 0 && dilationH > 0, dilationW > 0 && dilationH > 0,
"dilation should be greater than 0, but got dilationH: %d dilationW: %d", "dilation should be greater than 0, but got dilationH: %d dilationW: %d",
dilationH, dilationW); dilationH, dilationW);
...@@ -98,7 +98,7 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput, ...@@ -98,7 +98,7 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
dimw++; dimw++;
} }
AT_CHECK(ndim == 3 || ndim == 4, "3D or 4D input tensor expected but got: %s", TORCH_CHECK(ndim == 3 || ndim == 4, "3D or 4D input tensor expected but got: %s",
ndim); ndim);
long nInputPlane = weight.size(1) * group; long nInputPlane = weight.size(1) * group;
...@@ -110,7 +110,7 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput, ...@@ -110,7 +110,7 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
long outputWidth = long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1; (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
AT_CHECK(nInputPlane % deformable_group == 0, TORCH_CHECK(nInputPlane % deformable_group == 0,
"input channels must divide deformable group size"); "input channels must divide deformable group size");
if (outputWidth < 1 || outputHeight < 1) if (outputWidth < 1 || outputHeight < 1)
...@@ -120,27 +120,27 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput, ...@@ -120,27 +120,27 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight, nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight,
outputWidth); outputWidth);
AT_CHECK(input.size(1) == nInputPlane, TORCH_CHECK(input.size(1) == nInputPlane,
"invalid number of input planes, expected: %d, but got: %d", "invalid number of input planes, expected: %d, but got: %d",
nInputPlane, input.size(1)); nInputPlane, input.size(1));
AT_CHECK((inputHeight >= kH && inputWidth >= kW), TORCH_CHECK((inputHeight >= kH && inputWidth >= kW),
"input image is smaller than kernel"); "input image is smaller than kernel");
AT_CHECK((offset.size(2) == outputHeight && offset.size(3) == outputWidth), TORCH_CHECK((offset.size(2) == outputHeight && offset.size(3) == outputWidth),
"invalid spatial size of offset, expected height: %d width: %d, but " "invalid spatial size of offset, expected height: %d width: %d, but "
"got height: %d width: %d", "got height: %d width: %d",
outputHeight, outputWidth, offset.size(2), offset.size(3)); outputHeight, outputWidth, offset.size(2), offset.size(3));
AT_CHECK((offset.size(1) == deformable_group * 2 * kH * kW), TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW),
"invalid number of channels of offset"); "invalid number of channels of offset");
if (gradOutput != NULL) { if (gradOutput != NULL) {
AT_CHECK(gradOutput->size(dimf) == nOutputPlane, TORCH_CHECK(gradOutput->size(dimf) == nOutputPlane,
"invalid number of gradOutput planes, expected: %d, but got: %d", "invalid number of gradOutput planes, expected: %d, but got: %d",
nOutputPlane, gradOutput->size(dimf)); nOutputPlane, gradOutput->size(dimf));
AT_CHECK((gradOutput->size(dimh) == outputHeight && TORCH_CHECK((gradOutput->size(dimh) == outputHeight &&
gradOutput->size(dimw) == outputWidth), gradOutput->size(dimw) == outputWidth),
"invalid size of gradOutput, expected height: %d width: %d , but " "invalid size of gradOutput, expected height: %d width: %d , but "
"got height: %d width: %d", "got height: %d width: %d",
...@@ -191,7 +191,7 @@ int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight, ...@@ -191,7 +191,7 @@ int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,
long outputHeight = long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
AT_CHECK((offset.size(0) == batchSize), "invalid batch size of offset"); TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane, output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane,
outputHeight, outputWidth}); outputHeight, outputWidth});
...@@ -298,7 +298,7 @@ int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset, ...@@ -298,7 +298,7 @@ int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset,
long outputHeight = long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
AT_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset"); TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth}); gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
columns = at::zeros( columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
...@@ -414,7 +414,7 @@ int deform_conv_backward_parameters_cuda( ...@@ -414,7 +414,7 @@ int deform_conv_backward_parameters_cuda(
long outputHeight = long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1; (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
AT_CHECK((offset.size(0) == batchSize), "invalid batch size of offset"); TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
columns = at::zeros( columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth}, {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
...@@ -494,8 +494,8 @@ void modulated_deform_conv_cuda_forward( ...@@ -494,8 +494,8 @@ void modulated_deform_conv_cuda_forward(
const int pad_h, const int pad_w, const int dilation_h, const int pad_h, const int pad_w, const int dilation_h,
const int dilation_w, const int group, const int deformable_group, const int dilation_w, const int group, const int deformable_group,
const bool with_bias) { const bool with_bias) {
AT_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
AT_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
at::DeviceGuard guard(input.device()); at::DeviceGuard guard(input.device());
const int batch = input.size(0); const int batch = input.size(0);
...@@ -576,8 +576,8 @@ void modulated_deform_conv_cuda_backward( ...@@ -576,8 +576,8 @@ void modulated_deform_conv_cuda_backward(
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h, int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
int pad_w, int dilation_h, int dilation_w, int group, int deformable_group, int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
const bool with_bias) { const bool with_bias) {
AT_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
AT_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
at::DeviceGuard guard(input.device()); at::DeviceGuard guard(input.device());
const int batch = input.size(0); const int batch = input.size(0);
......
...@@ -71,26 +71,26 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput, ...@@ -71,26 +71,26 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
at::Tensor weight, int kH, int kW, int kT, int dH, int dW, int dT, at::Tensor weight, int kH, int kW, int kT, int dH, int dW, int dT,
int padH, int padW, int padT, int dilationH, int dilationW, int dilationT, int padH, int padW, int padT, int dilationH, int dilationW, int dilationT,
int group, int deformable_group) { int group, int deformable_group) {
AT_CHECK(weight.ndimension() == 5, TORCH_CHECK(weight.ndimension() == 5,
"5D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, " "5D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, "
"but got: %s", "but got: %s",
weight.ndimension()); weight.ndimension());
AT_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
AT_CHECK(kW > 0 && kH > 0 && kT > 0, TORCH_CHECK(kW > 0 && kH > 0 && kT > 0,
"kernel size should be greater than zero, but got kH: %d kW: %d kT: %d", kH, "kernel size should be greater than zero, but got kH: %d kW: %d kT: %d", kH,
kW, kT); kW, kT);
AT_CHECK((weight.size(2) == kT && weight.size(3) == kH && weight.size(4) == kW), TORCH_CHECK((weight.size(2) == kT && weight.size(3) == kH && weight.size(4) == kW),
"kernel size should be consistent with weight, ", "kernel size should be consistent with weight, ",
"but got kH: %d kW: %d kT: %d weight.size(2): %d, weight.size(3): %d, weight.size(4): %d", kH, "but got kH: %d kW: %d kT: %d weight.size(2): %d, weight.size(3): %d, weight.size(4): %d", kH,
kW, kT, weight.size(2), weight.size(3), weight.size(4)); kW, kT, weight.size(2), weight.size(3), weight.size(4));
AT_CHECK(dW > 0 && dH > 0 && dT > 0, TORCH_CHECK(dW > 0 && dH > 0 && dT > 0,
"stride should be greater than zero, but got dH: %d dW: %d dT: %d", dH, dW, dT); "stride should be greater than zero, but got dH: %d dW: %d dT: %d", dH, dW, dT);
AT_CHECK( TORCH_CHECK(
dilationW > 0 && dilationH > 0 && dilationT > 0, dilationW > 0 && dilationH > 0 && dilationT > 0,
"dilation should be greater than 0, but got dilationH: %d dilationW: %d dilationT: %d", "dilation should be greater than 0, but got dilationH: %d dilationW: %d dilationT: %d",
dilationH, dilationW, dilationT); dilationH, dilationW, dilationT);
...@@ -108,7 +108,7 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput, ...@@ -108,7 +108,7 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
dimw++; dimw++;
} }
AT_CHECK(ndim == 4 || ndim == 5, "4D or 5D input tensor expected but got: %s", TORCH_CHECK(ndim == 4 || ndim == 5, "4D or 5D input tensor expected but got: %s",
ndim); ndim);
long nInputPlane = weight.size(1) * group; long nInputPlane = weight.size(1) * group;
...@@ -123,7 +123,7 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput, ...@@ -123,7 +123,7 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
long outputTime = long outputTime =
(inputTime + 2 * padT - (dilationT * (kT - 1) + 1)) / dT + 1; (inputTime + 2 * padT - (dilationT * (kT - 1) + 1)) / dT + 1;
AT_CHECK(nInputPlane % deformable_group == 0, TORCH_CHECK(nInputPlane % deformable_group == 0,
"input channels must divide deformable group size"); "input channels must divide deformable group size");
if (outputWidth < 1 || outputHeight < 1) if (outputWidth < 1 || outputHeight < 1)
...@@ -133,27 +133,27 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput, ...@@ -133,27 +133,27 @@ void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight, nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight,
outputWidth); outputWidth);
AT_CHECK(input.size(1) == nInputPlane, TORCH_CHECK(input.size(1) == nInputPlane,
"invalid number of input planes, expected: %d, but got: %d", "invalid number of input planes, expected: %d, but got: %d",
nInputPlane, input.size(1)); nInputPlane, input.size(1));
AT_CHECK((inputHeight >= kH && inputWidth >= kW && inputTime >= kT), TORCH_CHECK((inputHeight >= kH && inputWidth >= kW && inputTime >= kT),
"input data is smaller than kernel"); "input data is smaller than kernel");
AT_CHECK((offset.size(2) == outputTime && offset.size(3) == outputHeight && offset.size(4) == outputWidth), TORCH_CHECK((offset.size(2) == outputTime && offset.size(3) == outputHeight && offset.size(4) == outputWidth),
"invalid spatial size of offset, expected time: %d height: %d width: %d, but " "invalid spatial size of offset, expected time: %d height: %d width: %d, but "
"got time: %d height: %d width: %d", "got time: %d height: %d width: %d",
outputTime, outputHeight, outputWidth, offset.size(2), offset.size(3), offset.size(4)); outputTime, outputHeight, outputWidth, offset.size(2), offset.size(3), offset.size(4));
AT_CHECK((offset.size(1) == deformable_group * 2 * kH * kW * kT), TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW * kT),
"invalid number of channels of offset"); "invalid number of channels of offset");
if (gradOutput != NULL) { if (gradOutput != NULL) {
AT_CHECK(gradOutput->size(dimf) == nOutputPlane, TORCH_CHECK(gradOutput->size(dimf) == nOutputPlane,
"invalid number of gradOutput planes, expected: %d, but got: %d", "invalid number of gradOutput planes, expected: %d, but got: %d",
nOutputPlane, gradOutput->size(dimf)); nOutputPlane, gradOutput->size(dimf));
AT_CHECK((gradOutput->size(dimt) == outputTime && TORCH_CHECK((gradOutput->size(dimt) == outputTime &&
gradOutput->size(dimh) == outputHeight && gradOutput->size(dimh) == outputHeight &&
gradOutput->size(dimw) == outputWidth), gradOutput->size(dimw) == outputWidth),
"invalid size of gradOutput, expected time: %d height: %d width: %d, but " "invalid size of gradOutput, expected time: %d height: %d width: %d, but "
...@@ -214,7 +214,7 @@ int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight, ...@@ -214,7 +214,7 @@ int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,
long outputTime = long outputTime =
(inputTime + 2 * padT - (dilationT * (kT - 1) + 1)) / dT + 1; (inputTime + 2 * padT - (dilationT * (kT - 1) + 1)) / dT + 1;
AT_CHECK((offset.size(0) == batchSize), "invalid batch size of offset"); TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane, output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane,
outputTime, outputHeight, outputWidth}); outputTime, outputHeight, outputWidth});
...@@ -341,7 +341,7 @@ int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset, ...@@ -341,7 +341,7 @@ int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset,
long outputTime = long outputTime =
(inputTime + 2 * padT - (dilationT * (kT - 1) + 1)) / dT + 1; (inputTime + 2 * padT - (dilationT * (kT - 1) + 1)) / dT + 1;
AT_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset"); TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
gradInput = gradInput.view({batchSize, nInputPlane, inputTime, inputHeight, inputWidth}); gradInput = gradInput.view({batchSize, nInputPlane, inputTime, inputHeight, inputWidth});
columns = at::zeros( columns = at::zeros(
{nInputPlane * kW * kH * kT, im2col_step * outputTime * outputHeight * outputWidth}, {nInputPlane * kW * kH * kT, im2col_step * outputTime * outputHeight * outputWidth},
...@@ -463,7 +463,7 @@ int deform_conv_backward_parameters_cuda( ...@@ -463,7 +463,7 @@ int deform_conv_backward_parameters_cuda(
long outputTime = long outputTime =
(inputTime + 2 * padT - (dilationT * (kT - 1) + 1)) / dT + 1; (inputTime + 2 * padT - (dilationT * (kT - 1) + 1)) / dT + 1;
AT_CHECK((offset.size(0) == batchSize), "invalid batch size of offset"); TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
columns = at::zeros( columns = at::zeros(
{nInputPlane * kW * kH * kT, im2col_step * outputHeight * outputWidth * outputTime}, {nInputPlane * kW * kH * kT, im2col_step * outputHeight * outputWidth * outputTime},
...@@ -543,8 +543,8 @@ void modulated_deform_conv_cuda_forward( ...@@ -543,8 +543,8 @@ void modulated_deform_conv_cuda_forward(
const int pad_h, const int pad_w, const int dilation_h, const int pad_h, const int pad_w, const int dilation_h,
const int dilation_w, const int group, const int deformable_group, const int dilation_w, const int group, const int deformable_group,
const bool with_bias) { const bool with_bias) {
AT_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
AT_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
at::DeviceGuard guard(input.device()); at::DeviceGuard guard(input.device());
const int batch = input.size(0); const int batch = input.size(0);
...@@ -625,8 +625,8 @@ void modulated_deform_conv_cuda_backward( ...@@ -625,8 +625,8 @@ void modulated_deform_conv_cuda_backward(
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h, int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
int pad_w, int dilation_h, int dilation_w, int group, int deformable_group, int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
const bool with_bias) { const bool with_bias) {
AT_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
AT_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous"); TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
at::DeviceGuard guard(input.device()); at::DeviceGuard guard(input.device());
const int batch = input.size(0); const int batch = input.size(0);
......
...@@ -33,7 +33,7 @@ void deform_psroi_pooling_cuda_forward( ...@@ -33,7 +33,7 @@ void deform_psroi_pooling_cuda_forward(
at::Tensor top_count, const int no_trans, const float spatial_scale, at::Tensor top_count, const int no_trans, const float spatial_scale,
const int output_dim, const int group_size, const int pooled_size, const int output_dim, const int group_size, const int pooled_size,
const int part_size, const int sample_per_part, const float trans_std) { const int part_size, const int sample_per_part, const float trans_std) {
AT_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
at::DeviceGuard guard(input.device()); at::DeviceGuard guard(input.device());
const int batch = input.size(0); const int batch = input.size(0);
...@@ -59,8 +59,8 @@ void deform_psroi_pooling_cuda_backward( ...@@ -59,8 +59,8 @@ void deform_psroi_pooling_cuda_backward(
const int no_trans, const float spatial_scale, const int output_dim, const int no_trans, const float spatial_scale, const int output_dim,
const int group_size, const int pooled_size, const int part_size, const int group_size, const int pooled_size, const int part_size,
const int sample_per_part, const float trans_std) { const int sample_per_part, const float trans_std) {
AT_CHECK(out_grad.is_contiguous(), "out_grad tensor has to be contiguous"); TORCH_CHECK(out_grad.is_contiguous(), "out_grad tensor has to be contiguous");
AT_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
at::DeviceGuard guard(input.device()); at::DeviceGuard guard(input.device());
const int batch = input.size(0); const int batch = input.size(0);
......
...@@ -33,7 +33,7 @@ void deform_psroi_pooling_cuda_forward( ...@@ -33,7 +33,7 @@ void deform_psroi_pooling_cuda_forward(
at::Tensor top_count, const int no_trans, const float spatial_scale, at::Tensor top_count, const int no_trans, const float spatial_scale,
const int output_dim, const int group_size, const int pooled_size, const int output_dim, const int group_size, const int pooled_size,
const int part_size, const int sample_per_part, const float trans_std) { const int part_size, const int sample_per_part, const float trans_std) {
AT_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
at::DeviceGuard guard(input.device()); at::DeviceGuard guard(input.device());
const int batch = input.size(0); const int batch = input.size(0);
...@@ -59,8 +59,8 @@ void deform_psroi_pooling_cuda_backward( ...@@ -59,8 +59,8 @@ void deform_psroi_pooling_cuda_backward(
const int no_trans, const float spatial_scale, const int output_dim, const int no_trans, const float spatial_scale, const int output_dim,
const int group_size, const int pooled_size, const int part_size, const int group_size, const int pooled_size, const int part_size,
const int sample_per_part, const float trans_std) { const int sample_per_part, const float trans_std) {
AT_CHECK(out_grad.is_contiguous(), "out_grad tensor has to be contiguous"); TORCH_CHECK(out_grad.is_contiguous(), "out_grad tensor has to be contiguous");
AT_CHECK(input.is_contiguous(), "input tensor has to be contiguous"); TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
at::DeviceGuard guard(input.device()); at::DeviceGuard guard(input.device());
const int batch = input.size(0); const int batch = input.size(0);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment